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LOW-FREQUENCY ELECTRIC   CIRCUITS  
             AND     TRANSMISSION LINES 
 

 
 

Transmission lines differ from  the  low-frequency   
electric  circuits    in  the following features    : 

 
• Maximum physical dimension of a low-frequency electric  
circuit is very much smaller than the operation wavelength , so the 
propagation time for an electric signal is so short that it does not need 
to be taken into account; 
 
• Transmission lines are usually a considerable  multiples of 
wavelength and may even be many wavelengths long , so 
PROPAGATION TIME for the electric signal along the line has to be 
taken into account; 
 
 
• The elements in a low- frequency   electric  circuit can be 
described by lumped parameters so  that currents flowing in lumped 
circuit elements do not vary specially  along the elements,and  no 
standing waves exist ⇔LUMPED-PARAMETER CIRCUIT; 
 
• A transmission line,on the other hand can be considered  as 
a DISTRIBUTED-PARAMETER CIRCUIT  which can be described 
by the circuit parameters distributed throughout its length.Except 
matched conditions,STANDING WAVES exist in a transmission 
line.In  otherwords, voltages and currents can vary in magnitude and 
phase over the length of the transmission line  ⇔DISTRIBUTED -
PARAMETER CIRCUIT; 
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VOLTAGE    AND  CURRENT ON  A  TRANSMISSION-LINE
                            
 

 
Equivalent circuits  of  differential length dz s of the two-

conductor lossy and lossless transmission lines  can  be   given   by the 
circuits  in the  Fig-2 and 3,respectively. 

 
 

 
A transmission line, in a differential length  dz , can be described 

by the following four parameters; 
 
R , resistance per unit length  in Ω/m 
L , inductance per unit length in H/m 
G ,conductance per unit length  in S/m 
C ,capacitance per unit length in F/m 
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   where R and L are the series elements, G and C are the shunt 
elements.R and G equals to zero in an ideal (lossless) transmission 
line as shown in Fig. 3. 
  If the quantities V(z,t) and V(z+dz,t) denote the instantenous 
voltages at z and z+dz  positions of the line respectively ; the relation 
betweeen these instantenous voltages can be given  as follows:    
 

dz
z
V)t,z(V)t,dzz(V

∂
∂

+=+                                                  (1)   

                                                                                        
Similary , if the quantities I(z,t) and I(z+dz,t) denote the instantenous 
currents at z and z+dz respectively ; the relation betweeen these  
instantenous currents can be  expressed   as follows:   
  

dz
z
I)t,z(I)dzz(I

∂
∂

+=+                                                    (2)                 
 
Applying  the Kirschhoff’s voltage law to the equivalent circuit of the 
ideal (lossless) transmission line in Fig.3,  we obtain ; 
 
 

0)t,dzz(V
t

)t,z(ILdz)t,z(V =++
∂

∂
+−                           (3)                   

 
which leads to;  
 
 

t
)t,z(IL

dz
)t,z(V)t,dzz(V

∂
∂

=
−+

−                                                (4) 
 
in the limit  Δz 0→ ,  equation(4)   becomes  
 

  
 
                                                              (5) 
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z
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∂

∂
=
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Similarly, applying theKirschhoff’s current law to the ideal 
transmission line in Figure-3,we have: 

 

0)t,dzz(I
t

)t,dzz(VCdz)t,z(I =++
∂
+∂

+−                      (6)                  
         
          

Dividing dz and letting dz approach zero,equation (6) becomes,  
 

t
)t,z(VC

z
)t,z(I

∂
∂

=
∂

∂−
                                                                            (7)                     

 
So equations ( 6) and  ( 7)  give the relations between voltage and 
current  at the instant t and on location z of an ideal transmision line. 
 
 
VOLTAGE   AND    CURRENT   WAVES    ON  
AN IDEAL TRANSMISSION LINES  
      
 
If the partial  derivatives of the equations (5) and (7) with respect to 
the time and space  are taken respectively and then combined together 
, one obtains   ONE DIMENSIONAL CURRENT WAVE EQUATION: 

 

2t

)t,z(I2
L

tz
)t,z(V2

∂

∂
−=

∂∂

∂
                                           (8) 

 

zt
)t,z(V2

C2z

)t,z(I2

∂∂

∂
−=

∂

∂
                                                                            (9) 

 

02t
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LC2z
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)t,z(I2

2t
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∂
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∂

∂⇒
∂

∂=
∂

∂
                      (10)                        
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Since similiar process can be repeated for  the voltage  on  the  
transmission line, so one can define ONE DIMENSIONAL WAVE 
OPERATOR:  
 

 

0
)t,z(V

)t,z(I2z

2
LC2z

2
=

∂
∂−

∂
∂

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

       One dimensional wave equation     (11)                        

 

where 
LC
1v

Δ

=   m/s  is the  phase velocity.                                               (12) 

                        
 
If  the u(z,t) denotes the solution of the one dimensional wave 
equation in (11) which can be either the voltage  or current wave , so  
general expression of the u(z,t) can be given as follows: 

 

       
  
 
So the voltage waves can be expressed as follows: 
 
 

                           )        
v
z(tf  V )  

v
z(tfVV(z,t) +−−+−++=              (14)        

 
In equation (14) , +V  and  -V   denote amplitudes of the voltage waves 
propagating with the phase velocity v  in   +z and –z directions, 
respectively. 
Substituting (14) in  the relations given by (5) and   (7) ,  one can write 
the following expressions for the current waves: 
 

          
(13) 
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                     (15)                                                  )
v
z(tf  I)  

v
z(tfII(z,t) +−−−++= −

                )16(                                                    V.C. v I

                     V.C. vI
-- =

= ++

                 

 
 
By  using equations   given by  (16)  , we have 
 

( ) (17)         Ω 
C
L

 
1-

C
LC
1

 1Cv -I

-V

I

V
 ˆZ   C =⋅=−⋅==+

+
= ⎟

⎠
⎞

⎜
⎝
⎛  

 

CZ    is  called    the characteristic impedance of the line. 

Using the equation (17) , we can express current waves in terms of 
the voltage waves: 
 

                         ) 
v
z

(t-f
cZ

- V
   )   

v
z

(tf
cZ

 V
 I(z,t) +−−+

+
=           (18)               

 
 
VOLTAGE AND CURRENT WAVES ON A SEMI-INFINITE 
LOSSLESS TRANSMISSION LINE 
 
 
If there  is no reflection wave,such as in the case of  the semi-infinite 
transmission line ,so the voltage and current waves have only single 
component propagating  in +z direction : 
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                                          )         
v
z

(tf
cZ

  V
I(z,t)

                                          )         
v
z

(tf   VV(z,t)

−+
+

=

−++=

                      (19) 

 
 
 
 If we  apply the Kirschhoff ‘s voltage law at the location of the z=0 , 
we have 
 
  

                                                 g R, t)0  I(, t)  0  V((t)gV ⋅+=                                   (20)  
 
Using 
 

)t,0(f)t(f +Δ
=+                                                                                                   (21) 

 
Then  the  expression   (20)   becomes 
 

)t(fgR
C

Z
V)t(fV)t(gV +

+
+++=                                                                  (22 ) 

 
So     )t(fV ++    is  obtained  from the equation (22)  as  
 

)t(gV
gR

C
Z

C
Z

)t(fV
+

=++
                                                                                  (23) 

 
So the voltage and current expressions at the t instant and on the z 
location of    the  transmission line can be given as  
 

)
v
zt(V

RZ
Z)t,z(V g

gC

C −
+

=                                                  

(24) 
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)
v
zt(V

RZ
1)t,z(I g

gC
−

+
=                                                   (25) 

 
 

where      
LC
1v

Δ

=     and     
C
LZ C

Δ
=  . 

 
 
Using the equation (23), the equivalent circuit of a semi-infinite 
transmision line at the z=0  location  can be given as shown in    
Figure 4. 
   

                                   
  The  input  impedance of a semi-infinite transmission line at  the z=0  
position , is equal to the characteristic impedance of the line : 
 
        Cin ZZ =                                                                                                  (26) 
 
 
 
TERMINATED LINE : RESISTIVE TERMINATION 
 

 
                                                                               
 
 
RL 

 

 

 

 

Figure-4 
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Boundary conditions at the z=0  location  are as follows: 
  
   

( ) LLL RIVt,V ==A                                                                               (27) 

 
                                                                                                            (28) 
 

 

(1) If  RL = Zc  , ( ) ( ) CL Zt,IVt,V AA ==   is satisfied by only  ( )t,V A+  
and  ( )t,I A+  waves   ⇒  The energy carried by the incident wave is 
completely absorbed by the load . ⇒  ( ) 0t,V =− A  
 
( 2 ) ⇒≠ CL ZR  in order that the boundary conditions given by (27) and  
(28) to be satisfied the reflected wave components have to exist. Now 
the generation of the reflected wave will  be formulated in terms of the 
source voltage waveform. Firstly the voltage wave incident across the 
load can be expressed in terms of the the source voltage waveform as 
 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛

υ
−υ=⎟

⎠
⎞

⎜
⎝
⎛

υ
−υ

+
=υ + AAA tVt

RZ
Z

t, gg
gC

C
i                                              ( 29 ) 

 
and the current   through the load is given by 
 

                                                                            ( 30 )      
 
 

Since there exists the  only single wave component until the waves 
come  to the load , so we can express the reflected voltage wave 
component as 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

υ
−

−
υ

−υ=υ − ztVt,z gr
AA

 

                                   (31) 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

υ
−

υ
+υ=υ − A2ztVt,z gr  

( ) LIt,I =A

( ) ( )t,
Z
1t,I i

C
i AA υ=
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The reflected voltage and current waves of the load can be given as 
                 

                                                    
 
                                                                                                      (32) 
 
 
The  boundary condition is  ( ) ( ) LL Rt,It, AA =υ=υ   and  substituting 
the incident and   reflected  wave expressions  into the boundary 
condition, we have 
 
 

 
 
 
 
 

                                                 
                                   (33) 
                                    
 

  
So  using  (33) , the reflection coefficient can be defined as   
        

    
CL

CL
g ZR

ZR
V
V

+
−

==Γ +

−Δ
                                                             (34) 

 
Properties : 

• 1g ≤Γ  
• RL=ZC ⇔V+=0                     (Termination by the Characteristic imp. ) 
• RL=0 ⇔ 1L −=Γ ⇔V= -V+      (Short-circuit Termination) 
• RL⇒∞  ⇔ 1L =Γ ⇔V- =V+      (Open-circuit Termination) 

 
 ν(z,t) , i(z,t) at  the  location of  z=0 should  satisfy the  boundary 
condition  
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

υ
−υ=υ − AA tVt, gr ( ) ⎟

⎠
⎞

⎜
⎝
⎛

υ
−υ=

− AA t
Z
Vt,I g

C
r

( ) Lg
C

L Rt)VV(
Z
1t,z ⎟

⎠
⎞

⎜
⎝
⎛

υ
−υ−=υ −+ A

( ) ⎟
⎠
⎞

⎜
⎝
⎛

υ
−υ+=υ −+ At)VV(t,z gL
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Figure 6 
 
 
 
 
If we   make νg(t) = 0  , at z = 0    and applying   the Kirschhoff 
Voltage and Current Laws, we obtain   

Cg

Cg
g ZR

ZR
+

−
=Γ  .  So  ,  for  Rg ≠ 

ZC  ,there is a reflected  wave   travelling  towards  the load too.  
 
 
 
MULTIPLE - REFLECTION THEORY 
 
According to this theory , )t,z(υ  can be expressed as the convergent 
series of the incident wave and its resulted reflected wave 
components: 
 

( )

....)4t(U4ztV

)3t(U4ztV

)2t(U2ztV

)t(U2ztVztVt,z

g
2

L
2

g

g
2
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gLg

g
2
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+
υ
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⎠
⎞

⎜
⎝
⎛

υ
−

υ
−υΓΓ

+
υ

−⎟
⎠
⎞

⎜
⎝
⎛

υ
−

υ
+υΓΓ

+
υ

−⎟
⎠
⎞

⎜
⎝
⎛

υ
−

υ
−υΓΓ

+
υ

−⎟
⎠
⎞

⎜
⎝
⎛

υ
−

υ
+υΓ+⎟

⎠
⎞

⎜
⎝
⎛

υ
−υ=υ

+

+

+
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              (35) 

 

where      )zt(U
υ

−    is   the Unit Step function  which can be expressed 

as 
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⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

→
υ

>→
=

υ
−

otherwise0

zt1
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Figure 7 
 
ΓL=0.5      Γg= - 0.5 
 
 
 
 
 
 

 
 
 
 
 

                         
 
 

 Figure 8 
  
Capacitive Termination 

 
 
 
 
 

 Definition equations of the termination can be written as: 
 

Qc(t)=C.Vc(t) or     
dt

)t(dVC)t(I c
c =                                                           (37) 

 
 

C 
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REFLECTION DIAGRAMS 
 
 
The   preceding  step-by-step   construction  and  calculation 
procedure  of  the  voltage  and  current  at  a  particular  time  and 
location  on  a  transmission  line  with  an arbitrary  resistive  
termination  tends  to  be  tedious  and  difficult  to  visualize since one  
has  to   consider  so  many  reflected  waves.  In such  cases  the 
graphical  construction  of  a  reflection  diagram  will be very helpful. 
Firstly  let  us   construct  a voltage reflection diagram. A reflection 
diagram plots  the  time  elapsed  after  a  change  in  circuit conditions  
versus  the  distance  z  from  the  source  end.  
The  voltage  reflection  diagram  of  the  circuit in  the  Fig.1  is  
given  in  the  Fig.2. 
 
 
 
 

Figure-1 
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t 
 
                   Γg

2ΓL
2V1

+ 

P5 
t5 

4T                     ΓgΓL
2V1

+ 

t4 
P4 

 3T Figure-2 
 ΓgΓLV1

+ 

P3 
t3 

2T                         ΓLV1
+ 

t2 
 

 
 T 
                 

P1     V1
+ 

t1  
    0         z1                                 l          z               
 
 
It  starts  with a wave V1

+ at   t=0  travelling  from  the  source  end 
(z=0) in  the  +z  direction  with  a  velocity  u . This  wave  is 
represented  by  the  directed  straight  line  marked  V1

+  from  the 
origin. This line has a positive slope equal to 1/u. When  the  V1

+  
wave reaches the load at z=l, a reflected  wave V1

-= ΓLV1
+ is  created 

if  RL≠ R0.  The  V1
-  wave  travels  in  the  –z  direction  and  is  

represented  by  the  directed  line  marked  ГLV1
+  with  a  negative  

slope  equal  to  –1/u. 
The   V1

-  wave   returns  to  the  source  end at  instant   t=2T  and 
gives  rise  to  another  reflected  wave     V2

+ = ГgV1
- = ГgГLV1

+, 
which is  represented  by  a  second  directed  line  with  a  positive 
slope. This  process  continues  back  and  forth  infinitely.  The 
voltage  reflection  diagram  can  be  used  conveniently  to  determine 
the  voltage  distribution  along  the  transmission  line  at  a  given 
time  as  well  as  the  variation  of  the voltage as a function of time at 
an arbitrary point on the line. 
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The voltage distribution along the line at  t=t4 (3T<t4<4T). 
1. Mark  t4  on  the  vertical   t-axis  of  the  voltage  reflection 

diagram. 
 
2. Draw  a  horizontal  line  from  t4, intersecting  the  directed  line 

marked  ГgГL
2V1

+ at  P4.(All directed  lines  above  P4  are 
irrelevant  to  our  problem  because  they  pertain  to  t>t4.) 

 
3. Draw a  vertical  line  through  P4,  intersecting  the  horizontal 

z-axis  at  z1. In  the  range  of 0<z<z1 ,  the voltage  has  a  value 
equal  to  V1=V1

+(1+ГL+ГgГL);  and  in  the  range  of z1<z<l   
the voltage is   equal to V1

++V1
-+V2

++V2
-

=V1
+(1+ГL+ГgГL+ГgГL

2).  So  there  is  a  voltage  discontinuity 
equal  to  ГgГL

2V1
+  at  z=z1  position. 

 
4. The  voltage  distribution along the line at t=t4,  V(z,t4), is then as 

shown in that diagram plotted for RL=3R0  ⇔ГL=1/2 and Rg=2R0  
⇔  Гg=1/3. 

 
 
 
                              V(z,t4) 
 
  V1

+(1+ГL+ГgГL+ГgГL
2) 

 
                                                                                   V1

+( ГgГL
2) 

           V1
+(1+ГL+ГgГL) 

                     V1
+(1+ГL) 

 
                           V1

+ 

 
 
 
             0             z1                             l       z 
 
                         Figure-3 
 
 
finding the variation of the voltage as the function of time at the point 
z=z1. 
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1. Draw a vertical line at z1, intersecting the directed lines at points 
P1,P2,P3,P4,P5, and so on.(There would be an infinite number of 
such intersection points if RL≠R0 and Rg≠R0,as there would be 
an infinite number of directed lines if ГL≠0 and Γg≠0) 

 
2. From these intersection points, draw horizontal lines intersecting 

vertical t-axis at t1,t2,t3,t4,t5 and so on. These are the instants at 
which a new voltage wave arrives and abruptly changes the 
voltage at z=z1. 

 
 

3. The graph of V(z1,t) is plotted in this diagram for ΓL=1/2 and 
Γg=1/3. When t goes to the infinity , the voltage at z1 (and at all 
other points along the lossless line) will assume the value 3V0/5, 
as given in equation: 

 
V=V1

++V1
-+V2

++V2
-+V3

++V 3-+………… 
           
               =V1

+(1+ΓL+ΓgΓL+ΓgΓL
2+Γg2ΓL

2+Γg
2ΓL

3+…..)  
       
               =V1

+[(1+ΓgΓL+Γg
2ΓL

2+….)+ΓL(1+ΓgΓL+Γg
2ΓL

2+…..)] 
 

       =V1
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ΓΓ−

Γ
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

ΓΓ− Lg

g

Lg 11
1

     

 

                    =V1
+ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

ΓΓ−
Γ+

Lg

L

1
1

 

  
Similar to the voltage reflection diagram in figure-2 a current 
reflection diagram for the transmission line circuit of figure-1 can be 
constructed. This is shown in figure-4. 
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  4T              P4 
     t4                             -ΓgΓL

2I1
+  

 
                                                        3T 
 
     t3                P3               ΓgΓLI1

+ 

    
   2T 
     t2                 P2           -ΓLI1

+ 

 
                                                       T                               Figure-4 
 
                   P1           
     t1                               I1

+                   

       0     z1                      t           z 
 
 
 
Here we draw directed lines representing current waves . The essential 
difference between the voltage and current reflection diagrams is in 
the negative sign associated with the current waves traveling in the –z 
direction on account of this equation: 
 
 

0
0

0

0

0 Z
I
V

I
V

=−= −

−

+

+

 

 
 
The current reflection diagram can be used to determine the current 
distribution along the transmission line at a given time as well as the 
variation of the current as a function of time    at a particular point on 
the line, following the same procedures outline previously for voltage.  
 
For example we can determine the current at z=z1 by drawing a 
vertical line z1 in figure-4,intersecting the directed lines at points 
P1,P2,P3,P4 and so on, and by finding the corresponding times t1,t2,t3,t4 
, and so on, as before. Figure-5 as a plot of I(z1,t)versus t, which 
accompanies the V(z1,t) graph in figure-6.  
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I(z1,t) 
 
                                                 ΓgΓLI1

+               ΓgΓL
2I1

+                    Γg
2ΓL

2I1
+ 

V0/3R0 
                                            
V0/5R0 ΓLI1

+ 
 
 I1

+ 

 
 
 
           0    t1                T               t2  2T   t3               3T        t4      4T      t5       t 
 
                                                             Figure-5 
 
 
 
V(z1,t) 
 
3V0/5                                                                       ΓgΓL

2V1
+          Γg

2ΓL
2V1

+
  

                                          ΓLV1
+      ΓgΓLV1+ 

                                          
 

 
V0/3 V1

+ 
 
 

                                               Figure-6 
 
 
 
We see that they are quite dissimilar. The current along the line 
oscillates around the steady-state value of V0/5R0  as seen at equation: 
 

0

1

1
1

R
V

I
Lg

L
L

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ΓΓ−
Γ−

=     
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0

0

0

1

55
3

R
V

R
V

I L =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+

 
 
with successively smaller discontinuous jumps at t1,t2,t3,t4,etc. There 
are two special cases. 

 
1. When RL=R0 (matched load, ΓL=0), the voltage and current 

reflection diagrams will each have only a single directed line, 
existing in the interval 0<t<T, irrespective of what Rg is. 

 
2. When  Rg=R0  (matched source Γg=0)  and  RL≠R0,  the  voltage 

and  current  reflection diagrams will each have only two 
directed  lines, existing in the intervals 0<t<T and T<t<2T. 

         In both cases the determination of the transient behavior on the                     
transmission line is much simplified. 

 
 
 
LOSSY   TRANSMISSION   LINES  

 
Relations between  V(z,t) ,V(z+dz,t)  and I(z,t), I(z+dz,t) can be 
written  as follows:  
 

dz
z

)t,z()t;zz(

,dz
z
i)t,z(i)t;zz(i

∂
υ∂+υ=Δ+υ

∂
∂+=Δ+

                                               (38) 
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The Kirschhoff’s voltage law can be applied to the equivalent circuit 
of  the Lossy transmission line : 
 

t
)t,z(iL)t,z(ziR

z
)t,z()t,zz(

have we,z with dividingBy 

0)t,zz(
t

)t,z(izL)t,z(ziR)t,z(

∂
∂

+Δ=
Δ

υ−Δ+υ
−

Δ

=Δ+υ−
∂

∂
Δ−Δ−υ

    

 
 
When oz →Δ   we obtain the derivatives of the voltage and currnent 
functions, 
 

t
)t;z(iL)t;z(Riz

)t;z(
∂

∂+=
∂

υ∂−                                                          (39)                               

 
In similiar manner , from the application of the Kirschhoff curent law , 
we have; 
 

0)t;zz(i
t

)t;zz(zC)t;zz(zG)t;z(i =Δ+−
∂

Δ+υ∂
Δ−Δ+υΔ−                               

        
If we divide by Δz  , when  Δz →0  the limit is  
 

t
)t;z(C)t;z(G

z
)t;z(i

∂
υ∂

+υ=
∂

∂
                                            (40)   

    
    (39) and  (40) are the  general transmission line equations ⇔      
    Telegrapher’s  Equations .    
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CONTINUOUS  SINUSOIDAL CASE   
 

 For the harmonic – time variation , the partial differential equations in 
(39) and    (40) become  the  ordinary  differential equations: 

                                                                                                 
          
                                                                              (41) 

 
 

[ ]tje)z(I
Im
Re

)t;z(i ω
Δ
=                                                                                  (42)                

 
If we substitute (41) and (42) into (39) and (40) 
 
 

    )z(I)LjR(
dz

)z(dV
ω+=                                                                 (43)                              

 
                                                  (44)                
                                                                                         
 

 
From (43) and (44) , we have one - dimensional wave equation for  
both   the voltage and current: 
 

0
)z(I
)z(V

dz
d

operator   waveldimensiona  - one

2
2

2
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
γ−

�
�	�
                                                         (45)                           

 
 

Here )CjG)(LjR(j ω+ω+=β+α=γ                                   (46) 
 
Analogous to the attenuation constant within the free lossy 
dielectric:( c,εμ ) 
 

ω
σ

−εμ=με=γ j(jj c         

)z(V)CjG(
dz

)z(dI
ω+=

[ ]tje)z(V
Im
Re

)t;z( ω
Δ
=υ
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where     
ω
σ

−ε=ε jc            ⇔ attenuation constant                  (47) 

                                        
               { } m/radIm γ=β         ⇔phase constant                                  (48) 
 
 
 
The solutions of (45)  give the phasors of  V(z) and I(z): 
 
 
V(z)=V0

+e-γ z + V0
-eγ z                                                                                   (49.1)   

                     
V(z)=V+(z) + V-(z)                                                                        (49.2)                   
 

V0
+ 

+ϕ+
Δ
= 0je)0(V                                                                    (49.3)  

                                                                                     
 

)z(jz)z(jz 00 ee)0(Vee)0(V)z(V β+ϕα−β−ϕα−+
Δ −+

+=               (49.4)                    
 
I(z) has the same properties as V(z)  
 
I(z)=I+(z) – I-(z)                                                                                                      (50) 
 
The relation between V(z),I(z) waves can be found by substituting 
(49) and (50) in (43) and (44); 
 
 

CjG
LjRLjR

)z(I
)z(V

)z(I
)z(VZ0 ω+

γ
=

γ
ω+

⇒
γ

ω+
=+== −

−

+

+Δ

 

 
 

                                                                                                (51) 

 
 
 
 

Ω
ω+
ω+

=
CjG
LjRZ 0
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IMPORTANT     SPECIAL   CASES 
 
(1) LOSSLESS LINE     ⇔  (R=0 , G=0)  
 
(a) PROPAGATION CONSTANT: 
 
γ=α+Jβ= LCJω    α=0  ⇒zero attenuation  and 
β= LCJω       ⇒              β is the lineer function of the ω ;              (52) 
 

(b) CONS
LC
1Up ==

β
ω

= T.  ⇒ (all the frequency combinations of a 

signal packet   will have the  same up speed along the line); 
 
(c) CHARACTERISTIC IMPEDANCE :   
 

Ω=Ω=+=
C
LR,

C
LjXRZ 0000                                                         (53) 

 
(2) LOW LOSS LINE    ⇔  (R<<ωL , G<<ωC) 
 
(a ) PROPAGATION CONSTANT : γ  
 

γ=α+Jβ= LCJω

2/12/1

CJ
G1

LJ
R1 ⎟

⎠
⎞

⎜
⎝
⎛

ω
+⎟

⎠
⎞

⎜
⎝
⎛

ω
+  

 
From  the  binomial series expansion using for  
 

1
C

G,1
L

R
<<

ω
<<

ω
 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=α

C
LG

C
LR

2
1

   or     α= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ 0

0

GZ
Z
R

2
1

 Np/m  ⇒ ( all the 

frequency combinations of a signal packet   will have the  same  
amount of attenuation  along the line); 

LCω=β rad/m   ⇒     β is the lineer function of the ω ;              (54) 
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(b) 
LC
1U p =

β
ω

= )   ⇒   (all the frequency combinations of a signal 

packet   will have the  same up speed along the line); 
 

(c) Z0=R0+JX0=
C
L

2/12/1

CJ
G1

LJ
R1 ⎟

⎠
⎞

⎜
⎝
⎛

ω
+⎟

⎠
⎞

⎜
⎝
⎛

ω
+  

 From the  binomial series expansion using for 1
C

G,1
L

R
<<

ω
<<

ω ; 

 

0
C
G

L
R

2
1

C
LX,

C
LR 00 ≅⎟

⎠
⎞

⎜
⎝
⎛ −

ω
−==                                                   (55)                    

 
 

(3) DISTORTIONLESS LINES    ⇔  C
G

L
R

=   

(a) PROPAGATION CONSTANT: 
 

γ=α+jβ= ( ) ( )LjR
L
C

L
RCCJLjR

2/1
2/1 ω+=⎟

⎠
⎞

⎜
⎝
⎛ +ωω+  

 L
CR=α  ⇒   independent of ω , LCω=β  ⇒ lineer function 

of ω ;                                                                                              (56) 
                             

(b) LC
1U p =

β
ω

=  ⇒   independent  of ω  

 
 
 
(c) CHARACTERISTIC IMPEDANCE:  
 

z0=r0+jx0=
0X;

C
LR;

C
L

CJ
L

RC
LJR

00 ===
ω+

ω+
                              (57) 

 



 27

                                                                                                                                                                              
HOMEWORK 
 
Z0=50 Ω  ; DISTORTIONLESS LINE ; α=0.01 dB/m  ;  C=0.1 pF/m 
are .given 
 
(a) The other line distributed parameters  and phase velocity are 
required ;( Result :R(Ω/m) ⇒ 0.057 Ω/m ; L(H/m) ⇒ 0.25 μH/m  ;  
G(μS/m) ⇒ 2.28 μS/m  and Up= 2x 108  m/sn   ) 
 (b) At the distances of l1=1 km , l2= 5 km  ; find out attenuations as 
the ratio ? 
 

Hint : { } { })CJG)(LJR(ReRe ω+ω+=γ=α  (Np/m 
                   
 

 
α FORMULA USING  THE POWER RELATIONS  ON A 
REFLECTIONLESS LINE  
 
For infinite  length line ,or finite line  terminated by z0 , the voltage  
,current and power waves can be expressed as; 

 
v(z) = v0e-(α+jβ)z                 
 

z)J(

0

0 e
Z
V)z(I β+α−=                                                            (58) 

 

     ( ) z2
02

0

2
0* eR

Z2

V
)z(I)z(VRe

2
1)z(P α−==                      (59)        

                                            
From the law of energy  conservation,one can write 
 

- )z(P2P
z

)z(P
L α==

∂
∂

          ⇒          m/Np
)z(P2
)z(PL=α        (60) 
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  Calculating  Pl(z)  by   using the lossy equivalent circuit,we have 
 

[ ]G)z(VR)z(I
2
1)z(P 22

L +=  

z22
02

0

2
0

L e)ZGR(
Z2
V)z(P α−+=                                                  (61)  

 
Substituting    (58),(59),(60) ,one obtains; 
 

( )2
0

0
ZGR

R2
1

+=α   np/m                                            (62) 

                                                                     
 For low loss line , using  Z0=R0= C

L     

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=α

C
LG

L
CR

2
1GR

R
R

2
1

0
0

                                      ( 63)     

 

Distortionless line Z0=R0= 
C
L ,  using  C

G
L
R

=  

 

0R
R

L
CR

2
1

RC
GL1

L
CR

2
1

==α⇒⎟
⎠
⎞

⎜
⎝
⎛ +=α                                    (64) 

 
 
GENERAL  CASE : A TRANSMISSION LINE  TERMINATED  
BY AN  ARBITRARY IMPEDANCE  
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V(z)= V+(z) +V-(z)=V0
+e-γz+ V0

-e+γ z                                                     (65) 
 

 

)z(jz
0

)z(jz
0 00 eeVeeV)z(V

−+ ϕ+βα−−ϕ−β−α−+ +=     (66)     
                              

)z(jz

0

0)z(jz

0

0
0Z00Z0 ee

Z

V
ee

Z

V
)z(I)z(I)z(I ϕ−ϕ+βα

−
ϕ+ϕ−β−α−

+
−+ −+

−=−=                   

                                                                                                   (67) 
                   
REFLECTION COEFFICIENT     FUNCTION 
 
Γ(z) 

Δ

=The reflected component of voltage (current) 
The coming component of voltage (current)   using this  definition , let 
us  find out   Γ(z)   for  (z=A ) : 
 
 

+

γ−

γ−+

γ−Δ
==Γ=Γ

0

2
0

0

0
L

V
eV

eV
eV)(

A

A

A
A                                           (68) 

 
and    Γ(z)   function can be written as 
 

                                                           
                                                               (69)                         
 

 
so  Γ(z) can be expressed in terms of   Γl  using    (68) : 
 

d2
L

)z(2
L e)d(e)z( γ−−γ− Γ=Γ⇔Γ=Γ A

                                 (70 ) 
 

d2e)d( L
d2

L β−ϕΓ=Γ α−                                                                
 

z2

0

0 e
V
V)z( γ

+

−
=Γ
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If a Γl  is   given, we can find out   Γ(d) for lossless line as shown: 
 
 
 
 

 
 

(1) Take α=0 (lossless line)  d2e)d( L
d2

L β−ϕΓ=Γ α−
       (71) 

 
 

 
 
 
 

)d(V
)d(V)d( +

−

=Γ                                                                           (72) 
 
 |Γ(d)| =  |ΓL| ⇒CIRCLE                                                         (73) 
 

d2)d( Lr β−ϕ=ϕ                                                                                            (74) 

     
Re{Γ} 

Im{Γ} 

ϕL 

2βd 

Γ(d) 

 

|ΓL|≤1 
|ΓL| 

ZL(ΓL) 

d 
Γ(d) 
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(2) α≠0 , |Γ(d)|= |ΓL|e-2αd ⇒  (SPIRAL) 
  

d2)d( Lr β−ϕ=ϕ                                                                  (75) 
 
 

 
 
 
So if you go towards the source from the load ,all the Γ(d)  take  place 
on the spital starting from the Γl ending to the Γ(A ). 
 
Let’s find V(z) and I(z) using Γ(z): 
 

)e1(eV))z(1(eV)z(V )z(2
L

z
0

z
0

−γ−γ−+γ−+ Γ+=Γ+= A
    (76)                        

                       

)e1(
Z

eV))z(1(
Z

eV)z(I )z(2
L

0

z
0

0

z
0 −γ−

γ−+γ−+

Γ−=Γ−= A
              (77)                       

                    

Let us write  the  boundary condition for z = A                                       
 
 

)1(eV)(VV L0L Γ+== γ−+ AA                                                (78)                          
 

                                           (79)                          
                                                                          
            

 

LLL
L

L
L I.ZV

I
V

Z =⇒=
Δ

                                              (80)                           

)1(
Z

eV)(II L
0

0
L Γ−==

γ−+ A
A
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Substitute (78) and (79) at (80); 
 
 

0L

0L
L ZZ

ZZ
+
−

=Γ                                                                            (81) 

 
• For ZL=Z0 ,ΓL=0⇔Γ(Z) ⇔V-(Z)=I-(Z)=0 
• |ΓL|≤1 
• ZL=0⇒ΓL= -1⇒ )(V)(V AA +− −=  
• ZL→∞ ,ΓL→1  )(V)(V AA +− −=   (RL>R0) 

• IF ZL=RL⇒
0L

0L
L RR

RR
+
−

=Γ  

 

• ZL=JXL⇒

0

L

0

L

0L

0L
L

R
X

arctg

R
X

arctg

RJX
RJX

−

−
=

+
−

=Γ  

 
      jXL{ZL} 

 
 
 
 
 

         
ZL

ϕL=arctgXL 

                      Ro
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⎟
⎠
⎞

⎜
⎝
⎛

ω
σ

−ε=ε⎟
⎠
⎞

⎜
⎝
⎛

ω
σ

−ε=ε
ε
μ

=η
ε
μ

=η 2
22c

1
11c

2

2
2

1

1
1 j1;j1;;

 

 
                                                                                                                                          (82) 

12

12

i

r

)0(E
)0(E

η+η
η−η

==Γ
Δ

 

 
 
Standing waves   pattern⇔ |v(z)| - z  
 
α=0⇔ lossless line    using   v(z)=v0

+e-jβz(1+Γ(z)) 
 

( ) ( )LLLL
d2J

L
0

d2sin(Jd2cos(e1)z(1
V

)z(V
ϕ+β−Γ+ϕ+β−Γ=Γ+=Γ+= β−

+

                                                                                                      (83) 
 

Finding the maximums and minimums of  +
0V

)z(V
 ; 

 

)d2(sin))d2cos(1(
V

)d(V
L

22
L

2
LL

0

ϕ+β−Γ+ϕ+β−Γ+=+                 (84) 
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2
LLL

0

)d2cos(21(
V

)d(V
Γ+ϕ+β−Γ+=+                      (85) 

 
-2βdmax+ϕl= n2Π        n=0,±1, ±2,.............. 
 
 

L
0

max 1max
V

)d(V
Γ+=+  

 

λ
∏

ϕ
+

λ
=

42
nd L

max                                                                         (86) 

 
)1(V)z(V L0max

Γ+= +
                                                          (87) 

 
-2βdmin+ϕl= (2n+1)Π        n=0,±1, ±2,..............  
 

λ
∏

ϕ
+

λ
+−=

42
)1n2(d L

min                                                            (88) 

 
Between two maxima or minima :λ/2  ; 
Two maxima and minima : λ/4 
 

)1(V)d(V L0min
Γ−= +

                                                  (89) 
 

)1(
Z

V
)d(I L

0

0
max Γ−=

+

                                      (90) 

 

L

L

min

max

1
1

V
V

VSWR
Γ−
Γ+

==
Δ

                                (91) 
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Here    1z
1z

ZZ
ZZ

L

L

0L

0L
L +

−
=

+
−

=Γ    ;
0

L
L Z

Zz =                   (92)                           

 
 
 
GRAPHICAL APPROACH 
 
α=0 ⇔ lossless line 
 

)z(2j
L

0

e1)z(1
V

)z(V −β−
+ Γ+=Γ+= A

 

 

L)z(2)z( ϕ+−β=ϕ
Δ

Γ A                                                                    (93) 
 

                                                    (94) 
                                                                               

 
  

)z(1
V

)z(V

0

Γ+=+                                                                             (95) 

 
 
 
 

 

Re{Γ} 

Γ-Düzlemi 

Γ(z) 1+Γ(z) 

..2,1,0n....2n)z(max

−−

Γ ++=π=ϕ
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                                        (96) 
 
  

)z(1
V

)z(V

min0

Γ−=+                                                                   (97)     

 
 
HOMEWORK:   
Find the maximum and minimum positions and values of |I(z)| - z 
 

d2)z( L β−+ϕ=ϕ
Δ

Γ            [ LL
0L

0L
L ZZ

ZZ
ϕΓ=

+
−

=Γ
Δ

                         (98) 

 
For Special Terminations standing waves pattern and VSWR: 
 

(1)Open-circuited termination: [ 0
LL 011Z ==Γ⇒∞→  

 
 
 
 
 
 
 
 
 
 

 

λ=
λ

==
λ

=π=β+=ϕΓ 3max2max1maxmaxmax d,
2

d,0d,
2
nd,2nd2)d(            (99) 

4
3d,

4
d,

2
)1n2(d,)1n2(d2)d( 2min1minminminmin

λ
=

λ
=

λ+
=π+=β+=ϕΓ           (100) 

 

..2,1,0n,)1n2()z(max

−−

Γ ++=π+=ϕ
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1
1
1

VSWR L
L

L →Γ
Γ−
Γ+

=  ;FOR OPEN CIRCUIT TERMINATED 

 

d2cos22
V

)z(V

0

β+=+  

 
 

 
 
 
 
 
 
  
 
 
 
 
 

 
HOMEWORKS: 
 
Find the standing waves pattern and VSWR for the above terminations 
 

1. |v(z)|=|v+|      zl=z0 
2. Zl→0(short cırcuıt) 
3. Zl=Rl+jXl 
4. Zl→0  → Γl=0;VSWR=1;|V(z)|max=|v(z)min 
5. Zl=Rl 

6. Zl=jXl          1VSWR
1VSWR

1
1

)z(V
)z(V

VSWR L
L

L

min

max

+
−

=Γ⇒
Γ−
Γ+

==  

 
(5)  Zl=Rl 
Terminating line with pure 
rezistance 

 
 

0L

0L
L ZR

ZR
+
−

=Γ
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1)Rl>Z0 ⇒Γl =|Γl| ⎣00 
 
2) Rl<Z0 ⇒Γl =|Γl| ⎣Π 
 

d2)d( L β−+ϕ=ϕ
Δ

Γ  
 

1) d2)d( β−=ϕ
Δ

Γ       |Vmax|=?, |Vmin|=?, VSWR=? 

2) Rl<Z0 , d2)d( β−Π=ϕ
Δ

Γ   0d,d2 minmin =β−Π=Π
Δ

   
    Vmin|=? ,VSWR=? 
 
 
POWER FLOW ALONG THE TERMINATED LINE 
 

 
 
 
 
 
 
 
 
 

The net power P(z) at a z-position of the line  
 

P(z)=Re{V(z)I*(z)}                                                     (101) 
 

where V(z)=V+(z)(1+Γ(z)) and ))z(1(
Z

)z(V)z(I
0

Γ−=
+

                                     

 
V(z)=V+(z)e-γz                                                                                            (102) 
 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Γ−Γ+=
+

+ ))z(1(
Z

)z(V))z(1)(z(VRe)z(P *
*

0

*

  (for low loss line) 



 39

 
 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Γ+Γ+Γ+Γ−Γ+Γ−Γ−=
+

ii
*2

0

2

JJ)z()z())z(1(
Z

)z(V
Re)z(P  

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Γ−=
+

))z(1(
Z

)z(V
Re)z(P 2

0

2

                                        (103.1)             

( ){ }
0

2

*

Z

)z(V
)z(I)z(VRe)z(P

+
++

Δ
+ ==                                (103.2) 

 
 

)z(P)z(
Z

)z(V
)z(P 2

0

2

+
−

Δ
− Γ==                                             (103.3) 

 
)z(P)z(P)z(P −+ +=  

 
))z(1)(z(P)z(P 2Γ−= +
 

 
 
 
The net power at the input of the line is 
 

( )2
ininin 1PP Γ−= +

                                                           (104) 
 
where 

0

2

0

0

2

in

V)0(V
P

ZZ

++
+ ==                                          (105) 
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is the power of the wave that comes to the input of the line. The net 
power that goes into the load is 
 

( )2
LLL 1PP Γ−= +

                                  (106) 
 
where 
 

0

2-2

0

0

2-
0

0

2

L
L

eVeVV
P

ZZZ

AA αγ +++

+ ===   (107) 

 
is the power of the wave that comes to the load and may also be 
written as 

 
Aα-2

inL ePP ++ =   (108) 
 
We can generalize Eq.(108) 
  

                                         
z-2

in eP)(P α++ =z   (109) 
 
 
 
          A  
 
                                                       + 
 ZG I in 
                                                     inV  ZL 
 
           VG 
                                                       - 
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From  Kirschhoff’s  voltage law  
 

                           
                              (110)              

   
                             (111)  

 
                            (112) 

 
 

+
0V  is the sum of all the voltage wave components traveling in the +z 

direction at the z=0 location 
 

 (0)VV0
++ =   (113) 

 
For the reflected wave we consider the reflection coefficient at the 
source end 

 
0

0

ZZ
ZZ

G

G
G +

−
=Γ   (114) 

 
Solving for ZG , Eq. (114) becomes 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ−
Γ+

=
G

G
G ZZ

1
1

0   (115) 

 
At the time t = 0+ 

   

                  ZG                        Z0                 
0

0
0 ZZ

ZV
V

G

G

+
=+

        (116) 

                 VG 
 

Aγ2
Lin

in
0

0
in0G

ininG

eΓ

)1(
Z
V)Γ(1VV

IVV

−

+
+

=Γ

Γ−++=

+=

G

G

Z

Z
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Second +
0V  wave  

 
 
 
               ZG                                                          
                                                                                           
               VG   

 
  

 

0

02
0 ZZ

ZV
eV

G

G
GL +

ΓΓ= −+ Aγ
                  (117)

  

Third  
+

0V  wave 

                               
0G

0G22γ
GL0 ZZ

ZV
)eΓ(ΓV

+
= −+ A

                     (118) 

 
If we go on like that, we have 
 

[ ]...............)eΓ(ΓeΓΓ1
ZZ

ZV
(0)VV 22γ

LG
2γ

LG
G0

0GΔ
0 +++

+
== −−++ AA

 (119) 

 
 
 

For  1〈ΓΓ − AγeLG   the series in Eq. (119) converges. 
  

A
A

2γ
GLG0

0G

0j

j2γ
LG

G0

0G

eΓΓ1
1

ZZ
ZV

)eΓ(Γ
ZZ

ZV
(0)V −

∞

=

−+

−+
=

+
= ∑   (120) 

 
where 
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GG

G
G ZZZZZ

Γ−
=

Γ−
Γ+

+=+
1

2
1
1

0000   (121) 

 
So we obtain 
 

)eΓΓ2(1
)VΓ(1

(0)V γ
GL

GG
A−

+

−
−

=                                                              (122) 

 
 

zα2
2

γ
LG

G

0

2
G e

eΓΓ1
Γ1

4Z
V

(z)P −
−

+

−
−

= A   (123) 

 
(z)P+

 is the total power of waves traveling in  the  + z direction. AP  
is the maximum power  of load and defined as 
                         

                               
G

2
GΔ

A 4R
V

P =                  (124) 

GV   is the rms value and { }GG ZeR ℜ=  
                 
                             ZG                     

                           GV                        ZL                      
∗= GL ZZ  

                                                                         

2
inG

2
G

Ain
ΓΓ1

Γ1
PP

−

−
=+

                                                                     (125) 

 
For a lossy line; 
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(126) 

 

 
The net power at the z location, 
 

( )
factor.lossy  gives PP

Γ(z)1(z)PP(z)

Lin

2

⇒−

−= +

 

 
For a lossless line; 
 

 
 
  (127) 
 
 
 
 

 
SPECIAL CASES 

 
Line is driven by a matched source 

 

0ZZG =  
 
 so 
 

0=ΓG  
 
Eq. (126) becomes 

( ) ( )( )
( )

( ) ( )( )
2z2

LG

2
L

2
G

A
2

L
z2

inL

2
inG

2
in

2
G

A
2

ininm

eΓΓ1

Γ1Γ1
PΓ1ePP

ΓΓ1
Γ1Γ1

PΓ1PP

γ

α

−

−+

+

−

−−
=−=

−

−−
=−=

( )( )
2j2β2

LG

2
L

2
G

ALin
eΓΓ1

Γ1Γ1
PPP

0α

−−

−−
==

=
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( )
( )2

L
2αα

AL

2
inAin

0

2
G

Am

Γ1ePP

Γ1PP

4Z
V

PP

−=

−=

==

−

+

  (128) 

 
If       0 and  0  ,0 ==Γ=Γ αLG  
  

AinL PPP ==                                                                                  (129) 
 

REFLECTION LOSS 

 

     is equation of reflection loss.     

 

   PP 2 +− ⋅Γ=          thus ; 

  dB        1log10L 2R
Γ

⋅=           is obtained.   

  
d-2

L e α⋅Γ=Γ         is unity of   d⋅α    is Neper.       

In this case between line of input and load  reflection loss is derived 

that 

dB        
P
Plog10LR ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅= −

+
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( )d4
102

L
10d4-2

L
10R e10    110

e

110L α
α

logloglog ⋅+
Γ

⋅=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⋅Γ
⋅=

 

 I II 
I :  LR load loss due to the load reflection        

II : loss term due to the attenuation of line 

A⋅⋅⋅+= α68682LL RloadRin ,  

 

EXAMPLE :   A 500 MHz generator with VG =20 Vrms  and internal 

resistance ZG =100 Ω is connected to a Z0 =100 Ω  transmission line 

that is A =4 m long and terminated in a ZL =150 Ω  load. Find Pin  

a) For α=0 dB/m and delivered power to load PL   

b) Repeat a) for α=0,5 dB/m     

 

SOLUTION  :   

Source  : 

  

  

 

PA= 1 W   f = 500 MHz since ZG = Z0 =100 Ω  so ΓG =0  source is 

matched to the transmission line. 

Load      :  20
250

100150

0L

0L
L ,=

−
=

Ζ+Ζ
Ζ−Ζ

=Γ  

 

W 1
104

20
R4

V
P

2

2

G

2
G

A =
×

==
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(a) For the lossless line α=0    is given before , so that   

                      PL =Pin=1 W 

 

(b) For the lossy line  α=0,5 dB/m 

                Np/m   230
698
50 ,

,
,

==α   and  Np 4602 ,=⋅⋅ Aα  

( )

( ) found. isW   98402011P

    0,126e 20e  and  PP

;    where1PP

2
in

0,46-2-
LinAin

2
ininin

,,

,

=−⋅=

==Γ=Γ=

Γ−⋅=
⋅⋅+

+

Aα

 

( ) ( ) W  6050201e11ePP 20,46-2
L

2-
LL ,,. =−=Γ−= + Aα

 

  W379,0605,0984,0PPP Linloss =−=−=   

Reflection loss Aα⋅+= 6968LL RLoadR ,            

 

 

 

 

 

 

 

( )

( ) obtained. is  W 96,02,011P

 thatso e  and  PP

;    where1PP

2
in

L
2-

LinAin

2
ininin

=−⋅=

Γ=Γ=Γ=

Γ−⋅=
+

+

Aα
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UTILIZATION   OF  A  TRANSMISSION LINE   
AS A CIRCUIT COMPONENT 
 
 

INPUT IMPEDANCE OF  A TRANSMISSION LINE ( inZ ) 
 
 
 
                                   ℓ 
         

+         
 
 V(0)          Z0 ,α ,β  ZL 
 

- 
 

Zin        Aβθ =  
 
 
Definition :   
 

inZ
 

Δ

=  )0(
)0(

I
V

I
V

in

in =  

 

inZ
   =  

)1(I
)1(V

in

in

Γ−

Γ+
+

+

 =  Zo(
in

in
1
1

Γ−
Γ+

)  

 
 

inZ
  =  0Z  (

in

in
1
1

Γ−
Γ+

) 

 

if   α = 0  ,    Z0 = R0   and substituting  LΓ
0L

0L
ZZ
ZZ

+
−

=  

we can write ; 
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inZ
 = 0Z  ( A

A

β−

β−

Γ−

Γ+
2j

L

2j
L

e1
e1

 )  

 

       = 0Z   A

A

β−

β−

+
−

−

+
−

+

2j

0L

0L

2j

0L

0L

e
ZZ
ZZ1

e
ZZ
ZZ1

   

inZ ( LZ,Aβ ) = 0Z ( )
)(tgZjZ
)(tgZjZ

L0

0L
A
A

β+
β+

                        (130) 

 
 
 

• inZ ( LZ,Aβ )  has the period of  either πβθ n+= A or  

2
n λ

+= AA   .In the other words inZ  is repaeted by  2
n λ

 

intervals. 
  
Line impedances at the maxima and minima: 
 

• inMAXZ = 0Z )
1
1

(
in

in
Γ−
Γ+

= 0Z VSWR 

                                                                                        (resistive) 
 
 

• inMiNZ = 0Z )
1
1

(
in

in
Γ−
Γ+

 =   VSWR
Z 0   
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IMPORTANT TERMINATIONS 
 

1-  OPEN CIRCUIT TERMINATION ( LΓ =1 , LZ ⎯→⎯ ∞ ) 
 

Substituting  LZ ⎯→⎯   ∞  in equation (1), then  we have 

inZ ( Aβ ) = 0Z ( )
)(tgZjZ
)(tgZjZ

L0

0L
A
A

β+
β+

 

                 

                     = 0Z )
)(jtg

Z
Z

Z
)(tgZj1

(

L

0
L

0

A

A

β+

β
+

 

 
 

inZ  = injX  = )cot(Zj 0 Aβ−                                               (131) 
 
 
 ℓ 
 

+ 
 

Z0  ,β  ZL ∞  
           
 

- 
 
Zin   
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inZ = )cot(Zj 0 Aβ−  
 
                       
Zin 
 
 
 
 
 
 
 ℓ  
 λ/4   λ/2 3λ/4        λ   
 
 
 
 
 
 
 
 
• In case of open circuit termination  inZ  is purely  reactive, 
 

• inZ  may be capacitive or inductive depending on θ
Δ

= Aβ   
 

• 0 < A  < 4
λ

  ⎯→⎯   inZ capacitive 

 

• A = 4
λ

+n 2
λ

  ⎯→⎯  inZ  SERIES resonance 

 

• 4
λ

< A  < 2
λ

  ⎯→⎯   inZ inductive 

 

• A = 2
λ

+n 2
λ

   ⎯→⎯     inZ  PARALEL resonance 
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• inZ  = )cot(Zj 0 Aβ−    varies with respect  to the frequency 
because of  β . 
 

• If Aβ <<1 then  )( Aβtg ≅ Aβ  and inZ  becomes 
 

inZ  = injX  = Aβ
− 0Zj  = ALC

C
Lj

ω

−

 =  CL
j

ω
1

−  

 

inZ = CL
j

ω
1

−           

 
• At microwave frequencies it is not possible to obtain 

LZ ⎯→⎯ ∞  because of the coupling  to the nearby objects and 
radiation. 
 
2- SHORT CIRCUIT TERMINATION ( LΓ =  -1 , LZ = 0 ) 
 

inZ ( Aβ ) = 0Z )
)(tgZjZ
)(tgZjZ(

L0

0L
A
A

β+
β+

 

               

                  = )(tgZj 0 Aβ+  
 
 

inZ = injX = )(tgZj 0 Aβ  
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Xin = Z0 tgβℓ 
 
 
 
 
 
 ℓ 
 
 
 
 
 
   
 λ/4   λ/2 3λ/4        λ   
 
 
 
 

 

• A = 0  ⎯→⎯      inZ   short circuit 
 

• 0 < A  < 4
λ

    ⎯→⎯  inZ  inductive 

 

• A = 4
λ

      ⎯→⎯  inZ  PARALEL resonance 

 

• 4
λ

< A  < 2
λ

    ⎯→⎯ inZ   capacitive 

 

• A = 2
λ

             ⎯→⎯   inZ SERIES resonance 
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3-QUARTER WAVE LINE TRANSFORMATOR  
 
 

A⇔ = (2n-1) 4
λ

 ,n =  1, 2,.....=>   Aβ = (2n-1) . 2
π

     

 
Substituting  )( Aβtg  ⎯→⎯ ∞   in equation  (130), inZ becomes 
 

inZ  =
L

2
0

Z
Z

                                                                            (132) 

 
• Quarter wave line transformator can be used as an impedance 

invertor. 
                                    
 
 
 

+ 
 

                     Z0 ,β  ZL 
 

- 
 

Zin                     A  = (2n-1) 4
λ

    
 
 

 

• LZ ⎯→⎯ ∞  , inZ  = 0 

• LZ ⎯→⎯ 0       ,        inZ ⎯→⎯ ∞  

• LZ =Jω L , inZ = Lj
Z 2

0
ω  = L

Zj-
2

0
ω  

• LZ = Cj
1

ω   ,      inZ = - Cjω 2
0Z  
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Impedance matching in case of  LZ  = LR  : 
 

    inZ =
L

2
0

Z
Z

 = 0Z         =>   0Z = L0 R.Z  

 
 
4-HALF WAVE  LINE TRANSFORMATOR  
 
 

A⇔  = n 2
λ

   n = 0,  1, 2,.....       Aβ = λ
π2n

2
λ

= πn  

 
 
 

  inZ = LZ                (133)   repeated by πn  intervals. 
 
 
 
EXAMPLE :  QUARTER WAVE TRANSFORMATOR IN 
IMPEDANCE MATCHING 
                                 

     ℓ/4 
  
 

 
 
   Z0 ,β  Zin Z0‘,β  RL 
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            The equivalent of the circuit is: 
                    
 

+ 

   Z0,β        inZ =
LR

Z 2
0 '

 

         - 
 

                                   

LΓ   =     
0

L

2
0

0
L

2
0

Z
R

'Z

Z
R

'Z

+

−

   

If LΓ = 0,  then all the power of the incident  wave is transferred to the 
load, so we can write  

LΓ = 0   ; LΓ = 0 −P =
2

LΓ +P  =  0    (no reflected power) 
 

To obtain LΓ = 0 we must have  
L

2
0

R
'Z

= 0Z  'Z 0⇒ = L0 R.Z    

 

where   LR and 0Z  are given. 
      
General Block Diagram of The Impedance Matching  
 
 

         MAIN LINE  
 

 Empedance 
                                     matching  
                    circuit   RL 
 

 
 

 Z0 RL 
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                                 WORKED EXAMPLES : 
 
 

EXAMPLE 1: For an matched load in any position ; find : 
 
(a) V(z,t) , I(z,t)     (b)   VL(t) ,  IL(t) (c) P+(z)  ,  P- (z) ,  P (z) 
 
(d) LΓ ,  Standing Wave Pattern ,VSWR 
 
 
 

 Zg  4m 
 

   

   +                                      
                       ZL 
 
 
 
   

                                                    Z=0               Z=ℓ 
 
Solution: As we have a matched load  we must have a ZL  equal to 
Zo; 

 

ZL=  Zo    LΓ⇒ =
0L

0L
ZZ
ZZ

+
−

 = 0, 

1
1
1

=
Γ−
Γ+

=
L

LVSWR
 

V(z) = (z)+V  + (z)−V  = (z)+V    (1+ (z)Γ )= (z)+V  
 

Ω1

Ω= 50Z0
0=α

snmu p /10.5,2 8=
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(z)+V   =
G0

G
ZZ

V
+  0Z  = 3,0 zje β−

294,0
51
50

=
je−

 

 

pu
w

=β ππ 8,0
105,2
102

8

8

=
×
×

 

 

294,0)( =+ zV
zje )8,0( π−

 
 

I (z) =
0Z

)z(V +

 (1- (z)Γ  )   

as we have (z)Γ = 0 then   I+(z) = 
0Z

)z(V +

 

 
 

I(z) = I+(z)  = 50
0,294 zje )8,0( π−

=  5,88. 310 − zje )8,0( π−
 

 
 

(t)LV    = 0,294 )2,3102cos( 8 ππ −×  
 

(z)LI  = =
Zo

VL (z)
 31088,5 −×

π2,3je−
 

 
(t)LV  = 31088,5 −× )2,3102cos( 8 ππ −×  

 

c) +
0

)(
V

zV
= )2cos(21 2 dβΓ+Γ+    

as we have LΓ = 0 then 
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     +
0

)(
V

zV
= 1  )(zV  = 

+
0V  

 
 
*    If the source  is matched to the line   GZ⇒  = 0Z    ; GΓ =0  
 the wave carries all the available  power of the source;   
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EXAMPLE 2:  Vg=100V  , Zg=50Ω   , f = 810  ,  R0=50Ω  
 
ZL=25 +j 25  ve  l = 3,6 m    are given. Find; 
 
a) V(z)   b) Vİ    c)V L  d)VSWR  e) PL=? 
 
Solution: As we have Zo =  ZG  so the source is matched to the line in 
this case we have  Γ G  = 0 . 
 

 V(z) =  
+Vo zje β−

 ( 1 + Γ (z))           Γ (z) = LΓ dje β2−
 

 

)(zV =
G0

G
ZZ

V
+ GZ .

zje β−
( 1 + LΓ

dje β2−
)       

 
where 
 

+
0V =

G0

G
ZZ

V
+ GZ  

 
 
 

LΓ =
0L

0L
ZZ
ZZ

+
−

502525
502525

++
−+

=
j
j

2575
2525

j
j

+
+−

=                                     

43,18

135

79
35

j

j

e
e −−

=  

  

LΓ  = 0,44
57,116je  
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+Vo  50)
100
50(100 ==        3

2πβ =  

 
 

)(zV = 50 
zj

e 3
2π

−
(1 + 0,44 

ππ )128,0
3

4( −− zj
e ) 

 

b)  iV = )0(V = 50 (1 + 0,44 
)128,0( π−je )  

 
c) VL=VL(3,6) 
 

d) Γ−
Γ+

=
1
1VSWR  = 57,11

57,11

44,01
44,01

j

j

e
e

−
+

 

 

e) P = 2
1

0
L

2
L R

Z
V

   P = 0,119 W 
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SMITH  CHART 
  
Transmission-line calculations such as the determination of input 
impedance, reflection  coefficient and load impedance often involve 
tedious manipulations of complex numbers. This tedium can be 
alleviated by using a graphical methot of solution. The best known 
and most widely used graphical chart is the  Smith chart  devised 
by P.H. Smith in 1939. Smith chart is a graphical plot of normalized 
resistance and reactance functions in the reflection -coefficient plane. 
In order to understand how the Smith chart for a lossless transmission 
line is constructed, let us examine the voltage reflection coefficient of 
the load impedance. 
 

         
jQr

0L

0L e
RZ
RZ

Γ=
−
−

=Γ                                      (133) 

 
Let the load impedance be normalized with respect to the 
characteristic impedance of the line. 
 

         jxr
R
Xj

R
R

R
Zz

0

L

0

L

0

L
L +=+==                    (134) 

 
where and are the normalized resistance and normalized reactance 
respectively. Equation (133) can be rewritten as  
 

          1z
1zj

L

L
ir +

−
=Γ+Γ=Γ

                          (135) 

where ,and are the real and imaginary parts of the voltage reflection 
coefficient respectively. The inverse relation of Equation (135) is 
 

         jQr

jQr

L e1
e1

1
1z

Γ−

Γ+
=

Γ−
Γ+

=                              (136) 

or 
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ir

ir
j)1(
j)1(jxr
Γ−Γ−
Γ+Γ+

=+                           (137) 

Multiplying  both the numerator and the denumerator of Equation 
(137) by the complex conjugate of the denumerator, and separating 
the real and imaginary parts, we obtain  
          

          2
i

2
r

2
i

2
r

)1(
1r

Γ+Γ−

Γ−Γ−
=                        (138) 

and 

          2
i

2
r

2
i

)1(
2x

Γ+Γ−
Γ

=                  (139) 

 
 
If equation (138) is plotted in the plane for a given value of, the 
resulting graph is the locus for this. The locus can be recognized when 
the equation is rearranged as 
 

          
2

2
i

2

r r1
1

r1
r

⎟
⎠
⎞

⎜
⎝
⎛

+
=Γ+⎟

⎠
⎞

⎜
⎝
⎛

+
−Γ                                    (140) 

 
It is the equation for a circle having a radius of 1/(1+r) and centered at   
(r/(1+r) ,0). Different  values of  r  yield circles of different positions 
in the reflection coefficient plane. A family  of  these circles are 
shown in figure 1. Since only that part of graph lying within the unit 
circle on the plane is meaningful; everything the outside  can be 
disregarded. 
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                                                              1.0 
 
 
                             x=0.5                                          x=1                            x=2 
 
 
                                                               0.5 
 
 
                                                                                       p 
                          r=0                         r=0.5         r=1             r=2           
                                                                 0 
 
 
                                                                 
 
                                                             -0.5 
                         x=-0.5                                             x=-1                      x=-2 
 
 
                                                                          -1.0        
 
                 Fig:1   Smith chart with  the rectangular coordinates 
 
Several salient  properties of  the r-circles are noted as follows:                

 

1. The centers of all r-circles lie on the Γr – axis. 

2. The r = 0 circle, having a unity radius and centered at the origin,          
is the largest. 

3. The  r-circles become progressively smaller as r increases from 0 
toward ∞ ,  

   ending  at the ( Γr   = 1,  Γi  = 0) point. 
4. All r-circles pass through the ( Γr   = 1,  Γi  = 0) point. 
 

     Similarly , (139) may be rearranged as 
 

  (  Γr  –1 ) 2  +  (  Γi    – 1/x  )2 =  ( 1/x )2                                    (141) 
 
 



 65

  This is the equation for a circles having radius 1/|x| and centered at  
Γr   = 1  and  Γi  = 1/x . 
Different values of  x yield circles of different radii with centers at 
different position on the Γr   = 1  line. A family of the portions  
ıf x-circles lying inside the |Γ| = 1 boundary are shown in dashed lines 
in Fig 1. The following is a list of several  salient properties of the  x-
circles. 
 

1. The centers of all x-circles lie on the Γr   = 1 line: those for x > 0 
( inductive reactance ) lie above the Γr – axis and those for  x< 0 
( capacitive  reactance ) lie below the Γr – axis. 

2. The x = o circle becomes the Γr – axis. 
3. The x-circles become progressively smaller as |x| increases from 

0 toward ∞, ending at the  ( Γr   = 1,  Γi  = 0) point. 
4. All x-circles pass though the ( Γr   = 1,  Γi  = 0) point.   

 
 
A smith chart is a chart of r- and x-circles in the Γr  – Γi   plane 

for |Γ| ≤ 1. It can be proved that the r- and x- circles are everywhere 
orthogonal to one another.  The intersection of an r- and an x-circles 
defines a point that represents a normalized load impedance   
zL = r + jx. The actual load impedance is ZL  = R0 ( r + jx ). Since a 
Smith chart plots the normalized impedance, it can be used for 
calculations  concerning a  lossless transmission line with an arbitrary 
characteristic impedance. 

 
As an illustration, point  P in Fig. 1. is the intersection of the  
r = 1.7 circle and the  x = 0.6 circle. Hence it represents 
zL = 1.7 + j0.6. the point Psc  at ( Γr  = -1, Γi = 0) corresponds to   
r =0 and x = 0 and, therefore, represent a short-circuit. The point Poc  
at ( Γr  = 1, Γi = 0)  corresponds to an infinite impedance and represent 
an open-circuit. 

 
 

The Smith chart in Fig.1  marked with   Γr   and   Γi  rectangular 
coordinates. The Smith chart can be marked with polar coordinates, 
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such that every point in the Γ - plane is specified by a magnitude |Γ| 
and a phase angle θΓ. This is illustrated in Fig 2, where several  
|Γ|-circles are shown in dotted lines and some θΓ -angles are marked 
around the  |Γ| = 1 circle. The |Γ|-circles are normally not shown on 
commercially available Smith charts: but once the point representing a 
certain zL = r +jx is located, it is a simple matter to draw a circle 
centered at the origin thorough the point. The fractional distance from 
the center to the point ( compared with the unity radius to the edge of 
the chart) is equal to the magnitude |Γ| of the load reflection 
coefficient; and the line to the point makes with the real axis is θΓ. 

 

 S
RR O

L =            (142)        

 
Each |Γ|-circle intersects the real axis at two points. In Fig. 2 we 
designate the point on positive-real axis (OPoc) as PM  and the point on 
the negative-real axis (OPsc) as Pm . Since x =0 along the real axis, PM  
and Pm  both represent  situations with a purely resistive load, ZL  = RL 
. obviously RL> R0 at  PM, where r > 1 : and RL< R0  at Pm, where  
r < 1. We  found that  S = RL/R0 = r  for  RL> R0 . This relation 
enables us to say immediately, without using Eq.(142) that the value 
of the r-circle passing through the point PM  is numerically equal to the 
standing-wave ratio. Similarly, we conclude from Eq.(142) that the 
value of the r-circle passing through the point Pm on the negative-real 
axis is numerically equal to 1/S. For the zL = 1.7+ j0.6 point, marked  
P  in Fig. 2, we find |Γ| =1/3  and  θΓ = 28o. at PM,  r =S = 2.0   these 
results can be verified analytically. 
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                                                              900 
  
                                1200     r=0                                                                600 
                                                                  x=1 
                                                              x=0,5                r=0,5          x=2   
                    1500                                                                                                             300 
 
 
                                                                         p 
               1800         x=0                                                                                                            00

 
                                                pm                                           PM 
 
 
 
                  2100                                                                                                              3300 
 
 
 
                                  2400                                         3000 
                                                           2700 
                                                       Figure 2 
 
 
In summary, we note the following:. 

 
1. All |Γ|-circles are centered at the origin, and their radius  vary 

uniformly from 0 to 1. 
2. The angle, measured from the positive real axis, of the line 

drawn from the origin through the representing zL  equals θΓ. 
3. The value of the r-circle passing through the intersection of the  

|Γ|-circle and the positive-real axis equals the standing-wave 
ratio S. 

 
 
 
So far we have based the construction of the Smith chart on the 
definition of the voltage reflection coefficient of the load 
impedance. The input impedance looking toward the load at a 
distance z’ from the load is the ratio of V(z’) and I(z’). We have, 
by writing  jβ   for  γ for a lossless line. 
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The normalized input impedance is 
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where 
                               
                   φ = θΓ − 2βz’                                                     (146) 
 
We note that Eq.(144) relating zi and Γe-j2βz’ = |Γ| ejφ  is of exactly the 

same form relating zL and Γ = |Γ| ejθ Γ

. In fact, the latter is a special 
case of the former for z’ =0 ( φ = θΓ ) . The magnitude,   |Γ| , of the 
reflection coefficient and, therefore, the standing-wave ratio S, are not 
changed by the additional line length z’. thus just as we can use the 
Smith chart to find  |Γ|  and  θΓ  for a given zL  at the load, e can keep 
|Γ|   constant and subtract (rotate in the clockwise direction)  from  θΓ  
an angle equal to   2βz’ = 4πz’/λ.  
This will locate the point for   ejφΓ , which determines zi . Two 
additional  scales in Δz’/λ are usually provided along the perimeter of 
the  |Γ| = 1 circle for easy reading of the phase change 2β(Δz’)  due to 
a change in line length Δz’ : the outer scale is marked ‘’ wavelength 
towards generator ‘’ in the clockwise direction (increasing z’ ) ; and 
the inner scale is marked ‘’ wavelength towards load ‘’ in the 
counterclockwise direction (decreasing z’ ). Figure 1.03 is a typical  
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Smith chart, which is commercially available. It has  a complicated 
appearance, but actually it consists merely of constant-r  and constant-
x  circles. We note that a change of half-a-wavelength in line length 
(Δz’ = λ/2 ) corresponds to a   2β(Δz’ ) = 2π  change in φ  . A 
complete revolution around a |Γ|-circle returns to the same point and 
results in no change in impedance. 
In the following we shall illustrate the use of the Smith chart for 
solving some typical transmission-line problems by several examples. 
 
 
 
SMITH CHART      APPLICATION      
 
 
 

          
 
 a) =ΖΖΖΖ inCBA ,,, ?  
 b)Find VSWR, maximum  and minimum voltage positions for both 
lines. 
  
SOLUTION :  
Solution  is obtained by the Analytical and Graphical methods. 
 
 1)Analytical method  
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2)Graphical Method  
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,    j=0.7 

→ΥB After taking symmetry of BΡ  according to the origin BΥ  could 

be found on the graph 

47.067.0:' jBB +=ΥΡ  

72.067.050.
200

jj
BC +=+Υ=Υ  

→ΡC After taking symmetry of  CΥ  according to the origin , CΡ  is 

found which corresponds to the impedance: 

74.07.0: jCC −=ΖΡ  

j0.38)Ω50(0.45.zzZ in0in −==  

Zin=22.5-j19Ω    real input impedance 
 
 
Example 2 
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17.01: =Γ→−=ΖΡ jBB
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Using Smith Chart on Lossy Lines 
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Position of the ΓL on the lossy lines 
(Lowering of the modules because of 
lossness of the line) 
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Formula of  the  normalized 

input impedance on lossy line 
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Numerical Application 

 

ZL1=0 , l=2m , Z0=75Ω , Zin=45+j225Ω 

 

a)α , β =? 

b)ZL2=67,5-j45Ω   →  Zin=? 
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If the line is lossless input impedance is purely reactive.Also it could 
be inductive or capacitive.This condition changes by the lenght of 
line. 
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Graphical Solution 
 
 
 
 

 
 
 
α and β are found by using the formulas below 
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 b) 
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0.2λ towards generator  
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Zin=z0.zin=54,75+j20,25 

 
 

IMPEDANCE MATCHING 
 

 

 
 
Impedance matching is one of the most important subjects of 
transmission lines. If the characteristic impedance Zo of the line is 
equal to the load impedance ZL, the reflection coefficient ΓL=0, and 
the standing wave ratio is unity. When this situation exists, the 
characteristic impedance of the line and the load impedance are said to 
be matched, that is, they are equal. In most transmission line 
applications, it is desirable to match the load impedance to the 
characteristic impedance of the line in order to reduce reflections 
standing waves that jeopardize the power-handling capabilities of the 
line and also distort the information transmitted. Impedance matching 
is also desirable in order to drive a given load most efficiently (i.e. to 
deliver maximum load ), although maximum efficiency also requires 
matching the generator to the line at the source end. In the presence of 
sensitive components (low-noise amplifiers), impedance matching 
improves the signal-to-noise ratio of the system in other cases 
generally reduces amplitude and phase errors. 
 
The equivalent circuit is shown below: 
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P(z)= P+ ( 1- |Γ(z)|2 )      ⇒   the power formula 
 
1) Γg=0               Zg=Zo  P+=Pmax        (maximum power tranfer) 
2) ΓL=0                ZL=Zo  PL=P+ 
 
There are different methods of achieving impedance matching: 
 
1-Matching using series or parallel  lumped reactive elements 
2-Single stub matching ( series or shunt ) 
3-Double stub matching 
4-Triple stub matching 
 
SINGLE STUB SERIES IMPEDANCE MATCHING: 
 
At microwave frequencies, it is often impractical or inconvenient to 
use lumped elements for impedance matching. Instead, we use a 
common matching technique that uses single open or short-circuited 
stubs connected either in series or in parallel.  In practice, the short-
circuited stub is more commonly used for coaxial and wave-guide 
applications because a short-circuited line is less-sensitive  to external 
influences (such as capacitive coupling and pick-up) and radiates less 
than an open-circuited line segment. However, for microstrips and 
striplines, open-circuited stubs are more common in practice because 
they are easier to fabricate.  
 
The principle of matching with stubs is similar to matching using 
lumped reactive elements. The only difference is that the matching 
impedance (Zs) is intruduced by using open or short-citcuited line 
segments at appropriate length (A). 
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In the figure above we can see a short-circuited single stub series 
empedance matching circuit. Here, we will find out appropriate A and 
d lengths that the input empedance of the matching circuit becomes 
Zo (Zin=Zo). 
 
As we study at normalized dimensions, following equations can be 
found: 
 
zin= ⎯Zin = Zin/Zo  and  zL=⎯ZL 
 
zin’= (zL + j.tanβd) / (1+ j.zL.tanβd)= 1+ j⎯Xin’  
 
This is the input empedance that is observed from right side of the 
stub! 
 
Re{zin’}=1   Im{zin’}=⎯Xin’  
 
The equivalence of the matching circuit is like this: 
 
                                                jX 
 
 
                                                                  Zin’ 
       Zin 
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zin= zin’ + jx = 1 = 1+ j0 
 
zin= 1+⎯jXin’ + jx = 1 +j0 
 
Xin’ + X = 0 
 
X= - Xin’  
 
So, chosen A and d lengths must supply these equations. 
 
• Let’s think about pure resistive load empedance (ZL=R ,  zL=⎯R=r)  
 
If tanβd=t, then 
 
zin’= 1+ j⎯Xin’= (r+j.t) / (1+j.r.t) 
 
(1+ j⎯Xin’). (1+j.r.t) = (r+j.t) 
 
Imaginary and real parts of both sides will be equal: 
 
1 –⎯Xin’.r.t = r    
 
j.(⎯Xin’ + r.t ) = j.t      ⇒   ⎯Xin’ = (1 – r).t  
 
t= ( 1 – r ) / (1 – r).r.t    ⇒    t2 = tan2βd= 1/r  
 
tan2βd = (1 – cos2βd) / cos2βd = 1/r       
 
By this equation, d can be found like this: 
 
d = (λ/4π) . arccos [(r –1) / (r +1)] 
 
And A can be found as below: 
 
–j⎯Xin’ = –j cotβA           ⇒        A= (λ/2π). Arctan (√r /1 – r)  
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• If the load empedance is not pure resistive ( zL = rL + xL ) : 
 
Then we look at the max. points of the wave: 
 
rmax = VSWR =  (1 – |ΓL| ) / (1 + |ΓL| ) =⎯R 
 
So, new formulas of d and A are: 
 
d’ = (λ/4π) . arccos [(VSWR –1) / (VSWR +1)]    d = d’ + dmax 
 

A= (λ/2π). Arctan (√VSWR /1 – VSWR) 
 
 
GRAPHICAL SOLUTIONS: 
 
Impedance matching problems can be solved easily using the Smith 
Chart. Let’s look at an antenna matching example: 
 
• To consider stub matching it helps to have a practical example. 

Here, we study a load  
formed by an antenna which is being used away from its design 
frequency. The method is not restricted to antenna loads.  
 
For a 1 metre long dipole antenna at 120 MHz, the load impedance is 
44.8 ohms - j 107 ohms. The normalised empedance is 0.597 - j 1.43 
with respect to the 75 ohm coaxial line. We shall determine the 
position and length of a series stub which will match this antenna to 
the transmission line.  
 
If we look at the SMITH Chart we find a circle of constant real 
normalised impedance r=1 which goes through the open circuit point 
and the centre of the chart. In our example in the next picture, this 
circle is drawn in red. If you plot any arbitrary normalised impedance 
on the SMITH chart, and follow round clockwise at constant radius, 
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from the centre of the SMITH chart, towards the generator (along the 
green line in the example), you must cross the r=1 circle somewhere. 
This transformation at constant radius represents motion along the 
transmission line towards the generator. (One complete circuit of the 
SMITH chart represents a travel of one half wavelength towards the 
generator.) At this intersection point the generalised arbitrary load 
impedance r + jx has transformed to (1+jx'), so, at least the real part 
of the impedance equals the characteristic impedance of the line. 
Matching has not yet been achieved because of the residual reactance 
x' which must be tuned out with the stub. Note that x' is different from 
x in general. For each transformation around the SMITH chart, 
representing travel one half wavelength towards the transmitter, there 
are two intersections with the r=1 circle. Stubs may be placed at either 
of these points.  
 
At the transformed (see figure –1 ) intersection point (red and green 
circles) the line is cut and a pure reactance -jx' is added. This is done 
by creating this reactance -jx' using a series-connected lossless stub. 
Now, the total impedance looking into the sum of the line impedance 
(which is 1+jx') and -jx' is therefore (1+jx') -jx' = 1 and the line is 
matched.  
 
Again, one looks at the SMITH chart and finds the outer circle where 
the modulus of the reflection coefficient is unity. On this circle are the 
SHORT and OPEN points, and all values of positive (top half of the 
SMITH chart) and negative (bottom half of the SMITH chart) 
reactance. The resistance is zero everywhere. It has to be zero, as a 
lossless transmission line with load infinity ohms (open) or zero ohms 
(short) has no mechanism for absorbing power. To generate a 
specified reactance, start at a short circuit (or maybe an open circuit) 
and follow the rim of the SMITH chart clockwise around towards the 
generator until the desired reactance is obtained. Cut the stub this 
number of wavelengths long.  
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                                              FIG –1  
 
In our example, the SMITH chart construction to find the stub length 
is shown in the next picture.  
 
From the blue arc in the previous picture we see that the reactance at 
the r=1 intersection point is +j1.86, so to cancel this out we must add a 
series stub having reactance -j1.86. In the next figure we plot the blue 
arc -j1.86 and, starting from the short circuit (r = x = 0) we follow the 
green line around a distance of 0.328 wavelengths clockwise towards 
the generator, to generate this value of reactance. If we had started 
from an open circuit we would only travel a distance (0.328 - 0.250) = 
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0.078 wavelengths to generate this reactance. This open circuit stub is 
represented by the red arc.  
 
 
The practical details of the series stub match are shown in third figure, 
where we display the physical lengths in centimetres, assuming a 
wave velocity on the coax (which we need to know to do this 
calculation) of 2x10^8 metres per second. This data is supplied by the 
cable manufacturer. The wave velocity and the frequency (120 MHz) 
allows us to calculate the wavelength in metres, and thus we can 
translate the "electrical lengths" from the SMITH chart into physical 
lengths of line. 
 
 

  

  A = 0.174λ and the stub position from load will be d = 0.47λ. 
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THE ANALYSIS OF  THE GENERAL CYLINDRICAL 
TRANSMISSION LINES 

 
We consider a cylindrical waveguide of arbitrary cross-sectional 

shape. The long axis of the waveguide is along the z-direction. The 
walls of the waveguide are perfect conductors, and the material within 
the waveguide is characterized by  ε, μ . 

 
HjwE μ−=×∇                (Faraday)        

JuEjwH ++=×∇ )( εσ    (Ampere)   

ε
ρ

=∇E                               (Gauss)  

 
0=∇H                                (Gauss) 

         
 

 
 

}{ 22 k+∇   

),,(

),,(

),,(

),,(

zyxB

zyxD

zyxH

zyxE

  = 0                   Helmholtz Equation    

{Ju=0,ρ=0} 

The Helmholtz equation is  a seperatable linear differential 
equation. So ; 
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}{ 22 k+∇   
),,(

),,(

),,(

zyxE

zyxE

zyxE

Z

Y

X

 = 0 

General Cylindrical Transmission System : 

The equation of a wave propogating along the z- axis : 

),,( zyxE = ),,( zyxEt + ),,( zyxEZ = zj
z

zj eyxeeyxe Β±Β± + ),(),(  

),,( zyxH = ),,( zyxH t + ),,( zyxH Z = ( , ) ( , )j z j z
zh x y e h x y e± Β ± Β+

G JJG
 

As all the EM wave components have to prove the Maxwell 
Equations, we can analyse these equations for the general cylindrical 
transmission lines. 
          
 

Defining the transverse gradient ∇τ , 

yxt a
x

a
x ∂

∂
+

∂
∂

=∇  

We have ; 

E×∇ =
zj

zztzt eeeajEa
x

ββ −+×−∇=×
∂
∂

+∇ )()()(  

=-jwμ0 ( ) j z
zh h e β−+

G JJG
( ) j z

zh h e β−+
G JJG

 

N 0
longitudinally breadthways 0

component component

( )
t z z z t z

j z
zt z t z z z

a e a e

e j a e e j a e j h h e ββ β ωμ
∇ × =− ×∇

∇ × − × + ∇ × − × = − +
JJJGJJG JJJG JJG

G JJG G G JJG JG G JJG
��	�
 ��	�
�	


 

Faraday’s Law : 

0 zt e j hωμ∇ × = −
G G

                                   (1) 
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0zz t za e j a e j hβ ωμ− ×∇ − × = −
JJG G JJG G G

                                     (2) 

 

Ampere’s Law : 

zt h j eωε∇ × = −
G G

 

z z zta h j a h j eβ ωε×∇ + × = −
G G G G G

 

To analyze the general cylindrical transmission lines, first we 
have to obtain e

G
 and h

G
 as the parameter of ez and hz .  

( , )z ze g e h=
G JG

 

( , )z zh f e h=
G JG

 

Second we have to solve the Helmholtz equation in V domain to 
obtain ez(x,y) and hz(x,y) and  finally assign all the EM components in 
V domain. 

If we multiply Eq-2 by zj aβ−
G

 vectorally, we obtain; 

[ ( ) ( )] ( )z z z z z ztj a a e j a a e j j aβ β β ωμ− × − ×∇ − × × = − −
G G G G G G G

 

( )( ) ( ( ))z z z z z zt tj a e a j a a eβ β− ∇ − + − ∇
G G G G G G

 

 

0k ω μ ε=
 

 

2 2
0( ) ( )z z zt tk e j a h j eβ ωμ β− = ×∇ − ∇

G G G G
 

2 2( ) ( )z z zt tk h j a e j hβ ωε β− = − ×∇ − ∇
G G G G
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According to these equations, we can seperate EM waves 

propagating along z-direction in cylindrical transmission lines into 

four groups: 

1) TE (transverse electric) Waves   : Ez = 0, Hz ≠0 

2) TM (transverse magnetic) Waves : Hz = 0, Ez ≠0 

3) TEM (transverse electromagnetic) Waves : Hz = 0, Ez 
≠0⇒In this condition β=±k 

4) Hybrid⇒ Ez ≠ 0, Hz ≠ 0   
 

t 2 2
0

.B z t z t zj e E jk B
k k

ωμε ×∇ ∇
=

−

JG JJG JJGJJG ∓
                                     (3)  

2 2 2{ ( }t kμεω∇ + −   
z

z

E

B

JG

JG     = 0                                     (4) 

 
TE waves are sometimes called H-waves and TM waves are 

sometimes called E-waves, where the E-wave and H-wave notation 
refers to the field that has a z-component. It is important to realize that 
TE and TM modes are independent solutions, i.e., they independently 
satisfy Eq (4) and the boundary conditions at the walls. (A solution 
where both Ez ≠0 and Bz ≠0 would not be an additional independent 
solution, but rather, if it existed it could be constructed from a 
superposition of degenerate TE and TM modes.However as we shall 
now see, the fields for TE and TM modes satisfy different boundary 
conditions. Consequently, they will not be degenerate.) 

For TM waves, the boundary condition that the tangential 
component of E vanishes at the walls means that Ez vanishes at the 
walls. This single BC uniquelydetermines the solution of Eq (4) for 
TM waves. Therefore, it is unnecessary in the case of TM waves to 
impose the other boundary condition at the walls, namely, that the 
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normal component of the magnetic field ( n te B⋅
JJG JJG

in this case) vanishes 
there. The lattercondition must be automatically contained in Eq (3) 
for tB

JJG
 when it is applied to TM waves by setting Bz = 0 in the RHS of 

that equation. To see this, note that the only component of t zE∇
JJG

 that is 
relevant for finding the normal component of Bt from Eq (3) is the 
gradient of Ez with respect to the coordinate along the boundary, and 
this vanishes since Ez is constant there (actually, Ez = 0 at the walls).  

For TE waves there is no Ez , so to solve Eq (4) we use the BC 
that the normal component of B vanishes at the walls. The latter BC 
turns out to be equivalent to the condition that the normal derivative of 
Bz vanishes at the walls. To see this, calculate n te B⋅

JJG JJG
 using Eq (3) for Bt 

. Noting that Ez = 0 for TE waves, we find that n te B⋅
JJG JJG

 is proportional to 

t zn B⋅∇
G JJG

, which is identical to the normal derivative ∂Bz/ ∂n. Thus ∂Bz/ 
∂n vanishes at the walls for a TE wave. No other boundary condition 
is needed to obtain a unique solution of Eq (4) for TE waves. 
Therefore, the other boundary condition, namely that the tangential 
component of tE

JJG
 vanishes at the walls, must be 6 automatically 

satisfied by this solution for TE waves. (This is easily shown by an 
argument analogous to that given in the previous paragraph for the 
case of TM waves.) 

Maxwell Equations in Divergiance Form 

0B Hμ∇ = ∇ =
JG JJG

   0H∇ =
JJG

 

( )( ) 0j z
t z zj a h h e ββ −∇ − + =

JJG G JJG
 

0t zh j hβ∇ − =
G JJG

             t zh j hβ∇ =
G

 

0D∇ =
JG

                         t ze j eβ∇ = −
G

 

Obtaining Ez(x,y) ve Hz(x,y) : 
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{ }2 2 0

E

H
k

B

D

∇ + =

JG

JJG

JG

JG
                     ⇒         { }2 2 0z

z

E
k

H
∇ + =

JJG

JJJG           (5) 

2 . ( )( )t z t zj a j aβ β∇ = ∇ ∇ = ∇ − ∇ −
JJG JJG

                                                            
2 2 2

t β∇ =∇ − (6)    

t z ya a
x y

∂ ∂
∇ = +

∂ ∂

JJG JJG
           

2 2
2

2 2.t t t x y
∂ ∂

∇ = ∇ ∇ = +
∂ ∂                                       

(6)   ⇒ (5)  we obtain; 

{ }2 2 ( , , )
0

( , , )
z

z

E x y z
k

H x y z
∇ + =

JJG

JJJG      ⇒     
2 2 2

2 2
2 2

2 2

h =k -β

( ) 0z z ze e k e
x y

β∂ ∂
+ + − =

∂ ∂ ��	�
   ;                   

The solution of this differential equation at Ez=0, gives Ez(x,y). 

2 2 2h k β= −    ⇒   Characteristic value 

2k
Uε

ω⎛ ⎞
= ⎜ ⎟

⎝ ⎠       ,     
0 0

1

r

CUε εμ ε
= =  

“h” is the function of the problem’s geometry and takes discrete 
values. We can obtain “h” from the solution of the Helmholtz equation 
for geometry of the problem. So we obtain;                                                              

2 2k hβ = −∓            {β∈R  and  k2 > h2 } 
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For propogation of EM waves β must be a member R .Using  
2 2k hβ = −∓  equation we can analyze the propogation for 

different conditions of  β. 

1) For β=0  k=kcutoff =h   ,  
C

Ck
Uε

ω
= = h 

       ωc=h Uε                               ⇒       
0

.
2 2C

r

h h cf
π μ ε π ε

= =  

If the EM wave frequency is equal to cutoff frequency , then β = 
0 . So no propogation is available. 

2) For  k > h         ⇔         k > kc          ⇔          f  < fc     

 

    k2-h2  > 0   ⇒   

2

1 Cfk
f

β
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠      

    ⇒       
C C Ck Uh

k k U
ε

ε

ω ω
ω ω

= = = =  

 

3)  For k <  h        ⇔       f  < fc                       

 ⇒      

2
2 2 2

2(1 )kk h h
h

β = − = − −∓ ∓  

  β  is  imaginer , and causes attenuation. 

Summary : General cylindrical wave guides have  cut off  
characteristic. 
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If   f = fc  cut off   

If   f  > fc  propogation 

If   f < fc   attenuation  

 For    ω > ωc :  

2 2
2 C

U Uε ε

ωω β
⎛ ⎞ ⎛ ⎞

− =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                      

For    ω < ωc :   

2 2
2 C

U Uε ε

ωω α
⎛ ⎞ ⎛ ⎞

+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

 
 
 
RECTANGULAR WAVEGUIDES 
 

The solution of the EM waves propagating in the  ± z direction in the 

section   σ     in the systems with only one conductor, the TEM mode 

cannot exist. 

 

 

 

 

 

 

 

b 

z

a 

y 



 93

 

 

 

 

 

 

First we must find ez and hz  

TE WAVES ⇔ εz=0 hz ≠0 

{∇t2+RC2 } hz=0  kc2=k2-β2=h2 

02
2

2

2

2

=+
∂
∂

+
∂
∂ hzkchz

y
hz

X
                      (1) 

hz(x,y)= f(x) . g(y)                     (2) 

 

If we put (2) into (1) and divide with f.g  

 

011 2
2

2

2

2

=++ kc
dy

fd
gdx

fd
f

      (3)     

 

Only the function of x   only the function of y 

 

-kx2 – ky2 + kc2 = 0 

 

01 2
2

2
2

2

2

=+⇒−+ fkx
dx

fdkx
dx

fd
f

                 (4.1)                             
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01 2
2

2
2

2

2

=+⇒−= gky
dy

gdky
dy

gd
g

                  (4.2)         

kx2 + ky2 = kc2                      (4.3) 

 

• From (4.1)  f(x,y)= A1cos kx.x + A2sinkx.x                     (5.1) 

• From (4.2)  g(x,y)= B1cos ky.y + B2 sin ky.y                   (5.1) 

 

BOUNDARY CONDITIONS 
 

 

 

 

 

 

 

 

 

           0=
∂
∂

boudaryn
hz  

            00 =
∂
∂

=
=

aX
Xx

h                 00 =
∂
∂

=
=

bY
Yy

h             (16) 

 

]
ax

xxkxAkxAxkxKxA
x
f

=
=+−=

∂
∂

0221 .cos.cos.sin  = 0 

 

y=0 

z 

a 

y 

y=b 

X=Q 

y=0 
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for x=0   A2=0                (7.1) 

for x=a   -kxA1sinkx a=0     

  kx.a=mπ  m= 0,1 ... 

  kx=
a

mπ   m= 0,1 .....      (7.2) 

 

00 =
∂
∂

=
=

bY
Yy

hz  

 

x
g

∂
∂ = --B1 ky.sin ky.y +B2ky cos k.y = 0 

For      y=0                    B2 =0                                                            

(7.3) 

 For     y= b  - B1ky sin ky.b=0 

          ky.b= nπ 

     ky=
b

nπ  n= 0,1...                   (7.4) 

 

Thus,  

h(x,y) = f(x) . g(y) 

hz(x,y)= Hmn . cos 
b

yn
a

xm ππ cos.      (8.1) 

 

kc2 = kx2+ky2 = kmn2 = 
22

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

b
n

a
m ππ  

Hmn 
=
Δ  A1B1                  (8.2) 
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Wc= wmn = kc U∈  

fc=fmn= 
2/122

2 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛∈

b
n

a
mU ππ

π
 

 

There is ∞ TE modes and all of them have different cut off frequency. 

There is not EM power of the waves propagating in the ±z  direction 

which belong to 

  f∞  

 

f= fmn  Temn mode status   βmn=0      

 (9.1) 

f>fmn   

 

Γ mn = jβmn = j (k2-k2mn)1/2 = j
2/122

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∈
−⎟

⎠
⎞

⎜
⎝
⎛

∈ U
wmn

U
w  

Γ mn = j

...1,0

..,1,02
2/1222

=

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

n

m
b

n
a

m ππ
λ
π

 

f < fmn ⇒  Γ mn= α mn = (kmn2-k2)1/2     (9.3) 

 

For TMmn hz=0, ez ≠0 (∇t2 + kc2) ez=0 are propagation parameters  

TMnn = ez (x,y) = Emn sin y
b

n
a

xm ππ sin.  
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TMnn = hz (x,y) = Hmn cos y
b

n
a

xm ππ cos.  

 

ban

m
b
n

a
mUfmn

>=

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛∈

=

..,1,0

...1,0
2

22

 

 

Thre is ∞x∞ number of TEmn and TMmn modes  

 

a
UfTE
2

1010 ∈
==   

a
Uf

a
U

fff
∈

<<
∈

<<

2

2010

  

 

One mode frequance band 

In practice the circular waveguides are mostly used in dominant mode. 

In this way one mode propagation is provided. 

 

Tε 01  → TM11 

Tε20 → TM11 

 

The Lowest Cut Off Frequancy is Te10 

 

TE10 → f10= a
U
2

ε  The Lowest Cut Off Frequency 

a
Uf

a
U ∈

<<
∈

2
 Allowable Operating Frequency Range 
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TE10 mode is the dominant mode for rectangular waveguides. (a>b)  

→→
∈

= 1010 2
TE

a
Uf  The lowest cut off frequency (a>b)  

f20 → TE20 → second lowest cut off frequency   

 

*In commercial waveguides  (a=2b) 

*In TM mode m= 0 n = 0 is not possible 

 

The design of rectangular waveguides for a given frequency. 

 

∈<<
∈ λλ a

2
   

f
U

∈=λ  

 

f= 1.6 Hz⇒  cmmcmm 303,0
10

303,010.3
9

8

==
==

∈=λ  

15 cm < a < 30 cm 

 

THE WIDTHWISE EM COMPONENTS FOR TEmn AND TMmn 

MODES 

Ht = zjeay
y
hzaz

x
hzkctHz

k
j βββ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=∇ /  

 

Ug= (dβ/dw)-1 

Et= -jβ/kc
2  ∇t Ez 



 99

 

PROPAGATION SPECIALITIES 
 

=−=→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∈
= 22

2

12 kmnk
f

fmn
U

f βπβ  

wt-βz=k the speed of constant phase lane 

 

∈>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∈
== U

f
fmn

UwUp
2

1
β

 

 

For general rectangular waveguide the speed of waves are bigger than 

the speed in space 

 

Fmn → the cutoff frequency for TEmn or TMmn 

 

 

 

 

 

 

 

 

GROUP SPEED 

 

Up/Uε 

Ug/Uε 
∈U

Up  

f/fc 

1 
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Ug= 1/dβ/dw = Uε ( ) ∈<− Uffmn 2/1  

 

 

 

 

 

 

 

 

 

Ug.Up= Uε2 Up> Ug 

 

POWER 
 

ortP
G { } 2/Re

2
1 *

m
wHxE

GG
=  

Ug
WORT
PORTUUWP ortort =∈=∈⇒=

GK
 

 

 

 

 

Guided wave lenght 

 

Vg 

Up 
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( )
∈>

−

∈
== λλ

β
πλ

2/1
2

ffmn
g  

πβλπλ 2.2
==∈= g

k
 

The guided waves wave lenght decreases. 

 

 

 

 

 

 

 

 

 

WAVE IMPEDANCES  ZTE ,  ZTM 

 

ZTEMN=
r

f
fmn ∈

=>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

377

1

2
2

ηη  

 

ZTM= ( ) ηη <− 2/1 ffmn  

   

H
E

Ht
EtZ

TM
T ==∈ η  

λp 

λg 

λε 

az 

Ht 

→ 
Et
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az:The direction of EM power propagation 

 

 

 

 

CALCULATION OF Pmn (For TEmn and TMmn) 

 

→= ∫∫ sdPPmn
widthwise

ort

GG
 The net power propagating in the z direction 

 

 

( )∫∫
==

=
b

y

tt

a

x

dydxzaHxEPmn
0

*

0

..Re
2
1 GKG

 

 

[ ]∫∫ −=
ba

dydxxHEyyExH
0

**

0

..Re
2
1  

[ ]∫∫ +=
ba

dydxHxHxyHHy
0

**

0

...Re
2
1  

 

Hxmn
Eymn

Hymn
ExmnZwmn ==  

 

∫∫ += dxdyHyHxZwmnPmn
tionwidthwise

)||||Re
2
1 22

sec

 

By using Hx and Hy 
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∫∫ +=
ba

dxdy
b

ynx
a

mZwmnPmn
0

22

0

cos(sinRe
2
1 ππ  

⎪
⎪
⎩

⎪⎪
⎨

⎧

≠=

≠≠

00
2

00
4

2

mnab

mnab

 

 

Zwmn |Ht|2 = Zwmn 
Zwn
Et

Zwn
Et 2

2

2

=  

 

TOTAL EM POWER FOR TEmn or TMmn MODES 

 

omon
abHmnPmn

∈∈
=

..2
|| 2

 

Here εom and εon are NEUMAN FACTORS 

 

⎩
⎨
⎧

>
=

=∈
02
01

m
m

om  

 

⎩
⎨
⎧

>
=

=∈
02
01

n
n

on  

22

10
2

10
2

10 ⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=−=

b
n

a
mkkk ππβ  
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FOR Tε10 MODE 

P10= 2
10

2

10 ||
4
1 Habaw ⎟

⎠
⎞

⎜
⎝
⎛

π
μβ   

P10= 2

10

|max|1
4
1 Eab

ZT ∈
 

π
μ HooawxEmo =   

 

TE10 → ET= Ey ay   Total field is only in the y direction. 

 

M=1 n=0 

 

 

(DOMINANT MODE) 

Emox < Edielectric distortion 

From TE10 mode  Ez=0 Hz≠0 Ex=0  can be find  

 

E is only at y direction and at x= a/2 tthere is maximum Ey 

The electrical fields is maximum at x=a/2. In other regions the change 

is sinπ/.  

 

 

 

 x=0 

x 0 

y=b 

X=Q 

x=a/2

  b 
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Ey= -jw zjxe
a

Ha βπ
π

μ −sin100  

Hx= jβ
zjxe

a
Ha βπ

π
−sin10  

Hz= H10 cos zj
e

a
x βπ −  

 

2

10
10 max..1

4
1 Eba

ZTE
P =   

 

Emax < Edielectric distortion happens  

Emax ≥ Edielectrik distortion doesnot happens 

 

If system is given then Emax can be find and maximum power occurs. 

 

THE CONDUCTİVİTY LOSSES 
 

 

 

 

 
e-αz 

P(z) 

Po 

Z 
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Zw
Ht
Et

azxEt
Zw

HtsdHtHtZwdstHEt
Zw

P

=

== ∫∫ )(1..
22

1 **
G

 

zPoePL
z
p αα 22 −==

∂
∂

−  

 

=2αP= 2(αc+αd)P 

 

canductivity   dielectric 

lass   loss 

 

P
PLc
2

=α  

 

∫= dlHtHtRsPL
*.

2
 

gs
Rs

δ
1

=  because of peffective depth there  is a Rs surface impedance 
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∫
∫=

dsHtHtZw
dlHtHtRs

c
s

e

.

.
α  (NP/M) conductivity loss constant 

 

αc → It is the result of ideal material 

 

DIELECTRIC LOSSES 
 

Eef = ε-j
w
d  d: dielectric conductivity 

 

REMEMBER 
 

∇x H
G

 = (δ d+jwε) E
G

  JuG = 0 

∇x H
G

 = jv(ε- )
w
dj δ E

G
  

 

γ =αd+jβ = j 22 kck −  

γ = j 22 kcefow −∈μ  

 

γ = αd + jβ and wμo σ d << < w2μoε-kc2/ and also with the use of 

binomial serials. 

 

wcwmNp
w
wcodd >>

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−

∈
= /1

2

2/1
μσα  
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The loosing factor in e-αdz, αd is real and positif. 

 

The relationship bteween αB/m and Np/m is  

 

DB/m= αα 686,8log10 2
10 =

Δ
Δze

z
 

[ ] eLogxxe
Z

Z
10

2 20log10 αα =
Δ

= Δ  

 

w>> wc için αd= ∈/2
od μ  

 

There are two losses. The αc is because of material not being ideal. 

The other loss becomes from cutoff frequency. 

CIRCULAR  WAVEGUIDE 
 

 
The Circular Cylindrical Waveguide 

 
This figure illustrates a cylindrical wave guide with a circular cross 
section of radius r. In view of the cylindrical geometry involved, 
cylindrical coordinates are most appropriate for the analysis to be 
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carried out. Since the general properties of the modes that may exist 
are similar to those for the rectangular guide. 
 
 

02 =+∇ ∈ψψ k    Helmholtz Equation 
 

( ) 011 2
2

2

2 =−+
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

∈ ψβ
φ
ψψ k

rr
r

rr    

 
(in  the circular cylindrical coordinate) 

 
 

( ) )(,, rRzre zj =− φψβ Φ(φ)e-jβz 

 
 

���� 
���� 	�

22rh
dr
dRr

dr
d

R
r

+⎟
⎠
⎞

⎜
⎝
⎛

 =  
�
�	�

2

21
φd

d Φ
Φ

−  

     only function of  r             only function of  φ  
     
The left-hand side is a function of r only, whereas the right-hand 
side depend on φ  only. Therefore this equation can hold for all 
values of the variables only if both sides are equal to some constant 
k2. 
 

02
2

2

=Φ+
Φ κ

φd
d

     ⇒   )cos(sincos)( ϕκφκφκφφ +≡+=Φ CBA  

     
For given r, φ   and  2n φπ +   represent same point. 
 
For n=κ    n=0,1,2,….And    0=φ    . w 
                                                 φφ nC cos)( =Φ  
 



 110

 

0)( 2222 =−+⎟
⎠
⎞

⎜
⎝
⎛ Rnrh

dr
dRr

dr
dr           

(The Bessel Differential Equation) 
 
 

            �
�	� )(hrDJ n   +  �
�	� )(hrENn   = 0 

    Bessel Function   Neumann Function 
 
In order to the function goes to infinite ,it should be   E=0 
 

zje β−     ;    222 hk −= ∈β  
  
 
Ψ  (TE)→H z  
 

boundaryofequation

z

n∂
Η∂

≡
br

z

r =∂
Η∂

=0 

 
Ez=0    ;  Jn(hb)=0⇒pnm   ⇒  qnm 
   
TE11 , TM01 , TE21 , TE01/TM11 
 
TE:  
 

φφ nhrDJzr n cos)(),,( =Ψ
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 J '
n(hb)=0   →    J '

n(qnm)=0  →  qnm=hb 
 

fTE nm
= b

Uqnm

π2
∈

  →   h= =
b

qnm

∈U
Cω

 

 
  Jn(hb)=0  →   Jn(pnm)=0    →     pnm=hb 
 

fTM nm
= b

Upnm

π2
∈

 

 
TE  and TM cutoff frequencies are different from each other.  
 
Order of the modes w.r.t the cutoff frequencies (from low to high)  
( β nm=0) 
 
TE11 , TM01 , TE21 , TE01/TM11……..TE31 
 
EXAMPLE: 
(a) f=6 GHz , 500 kW continuous wave power  l=30 feet, choose a 

traditional(commercial available) circular wave guide, 
(b) Order the lowest five cutoff frequencies, 
(c) Find out the operation bandwidth for the TE11 mode, 
(d) Find out the loss, 
(e) Find out the maximum wave for electrical field strength And 

compare it with break down value for the dry air, 
(f) If you insert a Teflon disk in the  wave guide , in order to have 

it as invisible what should its thickness be? 
 
SOLUTION:  
 

(a) f=6 GHz ;       fc 11TE = b
Uq
π2

11 ∈
 

 
      The operation frequency has to be higher than  fc 11TE  for the safety  
margin  let us  choose. 
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f=1.25x fc 11TE  ⇒    fc 11TE = 25.1
f

  

fc 11TE < f < fc 2TE    ⇒    1.25x fc 11TE ≤  f ≤   0.9xfc 2TE     
 
Taking 

 fc 11TE =5 GHz   →   fc 11TE = b
xc

π2
841,1

  ⇒    2b=3,5cm=1,39’’  ⇒  WC 150 

 
 
We choose standard WC 150 from the table of standard circular wave 
guides.                                   

 
 
   WC 150     ⇒     2b=1,5’’ 

                Wave guide⎦   ⎣Circular 
 
for this value(2b=1,5’’)  we obtain:       fc 11TE =4,614 GHz 

 
 Inside Dimensions(Inches) Recommended 

EAI Diameter Tolerance Roundness Frequency Range 
Designation  + or - Tolerance TE11  Mode GHz 

WC 992 9,915 0,01 0,01 0,803-1,10 
WC 847 8,47 0,008 0,008 0,939-1,29 
WC 724 7,235 0,007 0,007 1,10-1,51 
WC 618 6,181 0,006 0,006 1,29-1,76 
          
WC 528 5,28 0,005 0,005 1,51-2,07 
WC 451 4,511 0,005 0,005 1,76-2,42 
WC 385 3,853 0,004 0,005 2,07-2,83 
WC 329 3,292 0,003 0,003 2,42-3,31 
          
WC 281 2,812 0,003 0,003 2,83-3,88 
WC 240 2,403 0,0025 0,002 3,31-4,54 
WC 205 2,047 0,002 0,002 3,89-5,33 
WC 175 1,75 0,0015 0,0015 4,54-6,23 
          
WC 150 1,5 0,0015 0,0015 5,30-7,27 
WC 128 1,281 0,0013 0,0013 6,21-8,51 
WC 109 1,094 0,001 0,0011 7,27-9,97 
WC 94 0,938 0,0009 0,0009 8,49-11,6 
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WC 80 0,797 0,0008 0,0008 9,97-13,7 
WC 69 0,688 0,0007 0,0007 11,6-15,9 
WC 59 0,594 0,0006 0,0006 13,4-18,4 
WC 50 0,5 0,0005 0,0005 15,9-21,8 
          
WC 44 0,438 0,00045 0,0004 18,2-24,9 
WC 38 0,375 0,00038 0,0004 21,2-29,1 
WC 33 0,328 0,00033 0,0003 24,3-33,2 
WC 28 0,281 0,00028 0,0001 28,3-38,8 
          
WC 25 0,25 0,00025 0,0001 31,8-43,6 
WC 22 0,219 0,00025 0,0001 36,4-49,8 
WC 19 0,188 0,00025 0,00007 42,4-58,1 
WC 17 0,172 0,00025 0,00007 46,3-63,5 
          
WC 14 0,141 0,00025 0,00005 56,6-77,5 
WC 132 0,125 0,00025 0,00005 63,5-87,2 
WC 11 0,109 0,00025 0,00005 72,7-99,7 
WC 9 0,094 0,00025 0,00005 84,8-116 
 
 
 
 
 

 
( b) The lowest five cutoff frequencies the WC 150 
 
      Mode:             TE11          TM01          TE21          TE01/TM11 
        
      fc(GHz):        4.614          6.028         7.654             9.604 
 
(c) The operation bandwidth, 

 
  
                                         1.15xfc

11TE ≤  f  ≤  0.95xfc
21TE
 

 
TM01: 
→    E_ lines 
 
----  H_ lines 
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 TM01 is not generally used for the second order mode, 
  since  this configuration does occur rarely in practice. 
 
TE11: 

→    E_ lines  
 
 
 
 
 
 
 
 
 
TE21: 

→    E_ lines 
 (d) αc nmTE  

         
n: the order of the Bessel function ,     m: the order of the zeros 
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      αc nmTE = 2

1

686.8

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

f
f

b cζσδ
 

         
 
For the 30’’ propagation distance of    ‘Al’   waveguide the loss 
power=  0.68 dB 
 

          =
inputpower

routputpowe
%85.4   ,        PLOSS=72.6 kW 

       
 If the operation frequency  f  increases, the variations αc   as  mdB   
are given below: 

     
 
For the atmosphere pressure, the circular wave guide with the dry air 
insulator, the maximum pulsive power can be  

                  
11

max TE
P = 2.7(2B)2

2

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

f
f c

 

       
11

max TE
P =3.88 MW      ;                 

 
        

Emax= kVx2988.3
5.0 =10405 W/cm 


